摘要
提出一种灵活、有效的H∞-优化方法:梯度方法.利用H∞-范数与状态空间实现的关系,定义了目标函数ρ(ε,F),ρ(ε,F)与H∞-范数之间的关系是:分析了ρ(ε,F)的可微性,并给出了ρ(ε,F)/F的具体表达式以及使ρ(ε,F)极大化的梯度方法,从而导致的极小化.实例表明,梯度方法能有效地使ρ(ε,F)上升,并收敛于驻点或终止于不可微点.
In this paper, a gradient approach to H ̄∞-optimization is presented. This new approach is very effective and flexible. Through the relation between the H-norm and state-space representation, an alternative performance index ρ(ε, F) is defined,with the relation lim. The differentiability of ρ(ε, F) with respect to F is investigated and ρ(ε,F)/F is provided. A gradient algorithm is derived to maximize ρ(ε, F), and hence to minimize . Examples show that the gradient algorithm is very effective in increasing ρ(ε,F). The algorithm converges to stationary points or stops at non-differentiable points.
出处
《自动化学报》
EI
CSCD
北大核心
1996年第2期145-153,共9页
Acta Automatica Sinica
基金
国家自然科学基金