期刊文献+

家畜遗传抗性多基因效应预测的广义线性方法 被引量:1

Methodology of Predicting Additive Polygene Effect for Hereditary Resistance Using Generalized Linear Method
下载PDF
导出
摘要 在广义线性混合模型(GLMM)的框架内模拟研究了抗性性状的遗传分析方法,初步比较了GLMM方法与一般线性方法(LM)的育种值估计效果。模拟研究的抗性表型为单阈值和3阈值2种类型,选用的连接函数分别为logist连接和log连接,试验设计为全同胞-半同胞混合家系,参数估计采用Fisher迹法。研究结果表明,GLMM方法能较准确地估计公畜的个体育种值,在个体的遗传评定效果方面要明显优于LM方法,其预测的个体育种值排序结果与真实育种值的排序之间存在显著的秩相关。 The objective of this paper is to provide an introduction to generalized linear mixed models and to compare of the efficiency of the GLMM and LM. The method of GLMM is described that allows genetic analyses and predicting breeding value for resistance traits. Binary and ordinal response traits are simulated in this study, and the design is mixed family of full-half sib. The logit and log linkage function are applied, respectively. The method of Fisher score is applied to calculate the parameters in generalized linear mixed models. The results showed that generalized linear mixed model can predict breeding value to a nicety. In addition, the method of GLMM has a great advantage in predicting the breeding values for resistance traits.
出处 《畜牧兽医学报》 CAS CSCD 北大核心 2006年第4期313-316,共4页 ACTA VETERINARIA ET ZOOTECHNICA SINICA
基金 国家重点基础研究发展规划(G2000016103) 安徽省自然科学基金(050410204) 安徽省教育厅项目(2002jq126 2004kj151)
关键词 广义线性混合模型(GLMM) 遗传抗性 估计育种值(EBV) generalized linear mixed models hereditary resistance predicting breeding value
  • 相关文献

参考文献8

  • 1George A W,Thompson E A.Discovering disease genes:Multipoint linkage analysis via a new Markov Chain Monte Carlo approach [J].Statistical Science,2003,18(4):515~531.
  • 2Falconer D S,Mackay T F C.Introduction to Quantitative Genetics (4 th ed.) [M].Longman,England,1996.
  • 3Rekaya R,Gianola D.Application of a structural model for genetic covariance in international dairy sire evaluations [J].J Dairy Sci,2001,84:1 525~1 530.
  • 4Gianola D.Sire evaluation for ordered categorical data model with a threshold model[J].Genet Sel Evol,1983,15:210~224.
  • 5McCullagh P,Nelder J A.Generalized Linear Models (2nd ed) [M].Chapman & Hall,London,1989.
  • 6殷宗俊,张勤,张纪刚,丁向东.利用广义线性方法定位家畜抗性等级性状的QTL[J].畜牧兽医学报,2005,36(12):1241-1246. 被引量:2
  • 7Heather J,Cordell J A,Todd N J,et al.Statistical modeling of interlocus interactions in a complex disease [J].Genetics,2001,158:357~367.
  • 8Christoph Lange,John C Whittaker.Mapping quantitative trait loci using generalized estimating equations[J].Genetics,2001,159:1 325~1 337.

二级参考文献13

  • 1Heather J , Cordell J A , Todd N J. Statistical modeling of interlocus interactions in a complex disease [J].Genetics, 2001, 158:357-367.
  • 2George A W, Thompson E A. Discovering disease genes: Multipoint linkage analysis via a new Markov Chain Monte Carlo approach [J]. Statistical Science,2003, 18(4):515-531.
  • 3Christoph L, Whittaker J C. Mapping quantitative trait loci using generalized estimating equations [J].Genetics, 2001, 159:1325-1337.
  • 4LIU Y, Jansen G B. Quantitative trait loci mapping for dairy cattle production traits using a maximum likelihood method [J]. J Dairy Sci, 2004, 87:491-500.
  • 5Zhang Q, Biochard D, Hoeschele I, et al. Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree [J]. Genetics,1998, 149:1 959-1 973.
  • 6Falconer D S , Mackay T F C. Introduction to Quantitative Genetics (4rd Ed.) [M]. England: Longman,1996.
  • 7Kadarmideen H N, Thompson R. Linear and threshold model genetic parameters for disease, fertility and milk production in dairy cattle [J]. Anim Sci, 2000,71:411-419.
  • 8Nelder J A, Mead R. A simplex method for function minimization [J]. Computer J, 1965,7: 308-313.
  • 9Xu S Z, Atchley W R. Mapping quantitative trait loci for complex binary diseases using line crosses [J]. Genetics, 1996, 143:1417-1424.
  • 10Rao S Q , Xu S Z. Mapping quantitative trait loci for ordered categorical traits in four-way crosses [J]. Heredity, 1998, 81:214-224.

共引文献1

同被引文献15

  • 1REKAYA R, GIANOLA D. Application of a structural model for genetic covariance in international dairy sire evaluations[J]. J Dairy Sci, 2001, 84 : 1 525-1 53O.
  • 2TEMPELMAN R J. A mixed effects model for overdispersed count data in animal breeding[J]. Biometrics, 1996, 52:265-279.
  • 3GIANOL A D. Theory and analysis of threshold characters[J]. J Anita Sci, 1982, 54:1 079-1 096.
  • 4FOULLEY J L. Prediction of selection response for threshold dichotomous traits [J]. Genetics, 1992, 132:1 187-1 194.
  • 5DONOGHUE K A, REKAYA R, BERTRAND J K, et al. Threshold-linear analysis of measures of fertility in artificial insemination data and days to calving in beef cattle[J]. J Anim Sci, 2004, 82: 987.
  • 6THOMSON P C. A generalized estimating equations approach to quantitative trait locus detection of non-normal traits[J]. Genet Sel Evol, 2003, 35: 257-280.
  • 7MCCULLAGH P, NELDER J A. Generalized Linear Models (2^nd ed) [M]. Chapman & Hall, London, 1989.
  • 8FALCONER D S. Introduction to quantitative genetics (4rd Ed. ) [M]. Longman, England, 1996.
  • 9GAMAL A, BERGER P J. Properties of threshold model predictions[J].J Anim Sci, 1999, 77: 582- 590.
  • 10GIANOLA D. Sire evaluation for ordered categorical data with a threshold model [J]. Genet Sel Evol, 1983, 15:210-224.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部