期刊文献+

采用ASPCM模型进行姿势鲁棒性人脸识别

Pose robust face recognition based on ASPCM model
下载PDF
导出
摘要 提出ASPCM模型,并将其用于不同姿势下的人脸识别。对人脸图像的形状表示和纹理表示进行主成分分析,建立形状模型和纹理模型;以形状参数、纹理参数和姿势参数间的转换确定人脸图像与头部角度间的映射关系;使用精确性和概括性两个标准衡量ASPCM模型的分解性能和合成性能;根据平均纹理相似度判断输入图像与模型视图间的相似程度。实验表明,该模型分解性能的精确性误差和概括性误差均在1.85°以内;合成性能的这两种误差均在1.1个像素以内;精确性和概括性的平均纹理相似度均在95.8%以上;当头部转动角度在25°以内时,该模型的识别率达到100%。 A novel model named Analysis Synthesis Principal proposed and applied to face recognition with various poses. Component Mapping(ASPCM) is Shape representation and texture representation are subjected to principal component analysis, resulting in shape model and texture model respectively. Relationship between facial image and 3D head angles is obtained from the transformation rules of shape, texture and pose parameters. Accuracy and generalization areused to gauge analysis and synthesis abilities of ASPCM model. Average texture similarity is constructed to gauge degree of similarity between model views and target images. The experiments show that accuracy and generalization of analysis in average angular error are both below 1.85°. Accuracy and generalization of synthesis in average position error are both below 1.1 pixels. The two average texture similarities are both beyond 95.8%. Recognition rate of ASPCM model reaches 100 % while head pose range is below 25°.
出处 《光电工程》 EI CAS CSCD 北大核心 2006年第4期101-104,共4页 Opto-Electronic Engineering
关键词 形状表示 纹理表示 模型视图 分解合成主成分映射 模式识别 Shape representation Texture representation Model view Analysis synthesis principal component mapping Pattern recognition
  • 相关文献

参考文献7

  • 1A.Z.KOUZANI,F.HE,K.SAMMUT.Towards invariant face recognition[J].Information Sciences,2000,123(1):75-101.
  • 2Mun Wai LEE,Surendra RANGANATH.Pose-invariant face recognition using a 3D deformable model[J].Pattern Recognition,2003,36(8):1835-1846.
  • 3Jian Huang LAI,Pong C.YUEN,Guo Can FENG.Face recognition using holistic Fourier invariant features[J].Pattern Recognition,2001,34(1):95-109.
  • 4S.EICKELER,S.MULLER,G.RIGOLL.Recognition of JPEG compressed face images based on statistical methods[J].Image and Vision Computing,2001,18(4):279-287.
  • 5N.F.TROGE,H.H.BULTHOFF.Face Recognition under varying Poses:the role of texture and shape[J].Vision Research,1996,36(12):1761-1771.
  • 6Kurita TAKIO,Takahashi TAKASHI.Viewpoint independent face recognition by competition of the viewpoint dependent classifiers[J].Neurocomputing,2003,51(4):181-195.
  • 7赵明华,游志胜,赵永刚,吕学斌,穆万军.基于GNSA多尺度模型的人脸识别[J].光电工程,2005,32(2):93-96. 被引量:1

二级参考文献5

  • 1MALLATS.信号处理的小波导引:第2版[M].北京: 机械工业出版社,2002..
  • 2BANHAM M R, KATSAGGELOS A K. Spatially Adaptive Wavelet-Based Multiscale Image Restoration [J]. IEEE Transactions on Image Processing, 1996, 5(4): 619-634.
  • 3BOUMAN C, LIU B. Multiple Resolution Segmentation of Textured Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(2): 99-113.
  • 4DAOUDI K, FRAKT A B, WILLSKY A S. Multiscale Autoregressive Models and Wavelets[J]. IEEE Transactions of Information Theory, 1999,45(3): 828-845.
  • 5徐之海,冯华君,李奇,徐红岩.基于Karhunen-Loeve变换的人脸识别研究[J].光电工程,2001,28(6):48-51. 被引量:6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部