期刊文献+

(F,α,ρ,d)-凸和广义(F,α,ρ,d)-凸性下一类多目标规划问题的对偶 被引量:9

The Duality in Multi-objective Programming Involving (F,α,ρ,d)-Convexity and Generalized(F,α,ρ,d)-Convexity
下载PDF
导出
摘要 讨论了Mond-Weir型向量对偶,在(F,α,ρ,d)-凸和广义(F,α,ρ,d)-凸性下,获得了弱对偶定理. In the paper, a weak duality theorem is obtained for multi-objective programming involving ( F, α, ρ, d ) - convexity and generalized ( F, α, ρ, d) - convexity in Mond-Weir type duals.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期63-66,共4页 Journal of Sichuan Normal University(Natural Science)
关键词 Mond-weir型向量对偶 弱对偶 (F α ρ d)-凸 广义(F α ρ d)-凸 Mond- Weir type vector duality ( F, α, ρ, d) - convexity Generalized ( F, α, ρ, d ) - convexity Weak duality
  • 相关文献

参考文献6

  • 1Weir T,Mond B.Generalized convexity and duality in multi-objective programming[J].Bull Austral Math Soc,1989,39:287-299.
  • 2Egudo R.Efficiency and generalized convex duality for multi-objective programs[J].JMMA,1989,138:84-94.
  • 3Preda V.On efficiency and duality for multi-objective programs[J].JMAA,1992,166:365-377.
  • 4Gulati T R,Islam M A.Sufficiency and duality in multi-objective programming involving generalized F-convex functions[J].J Math Anal Appl,1994,183:181-195.
  • 5Liang Z A,Huang H X,Pardalos P M.Optimality conditions and duality for a class of nonlinear fractional programming problem[J].J Opt Theory Appl,2001,110(3):611-619.
  • 6吴泽忠,李泽民.广义(F,α,ρ,d)-凸条件下的多目标规划的最优性充分条件[J].经济数学,2002,19(4):90-94. 被引量:9

二级参考文献4

  • 1[1]V. Preda, On efficiency and dualty for multiobjective programs, JMAA, 166(1992), 365-377.
  • 2[2]T.R. Gulati and M. A. Islam, Sufficiency and duality in multiobjective programming problems involving generalized F-convex functions, JMAA, 183(1994), 181-195.
  • 3[3]J. P. Vial, Strong and weak convexity set and functions, Math. Oper. Res, 8(1983), 231-259.
  • 4[4]Z. A. Ling, H. X. Huang, P. M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming problems, JOTA, 110: 3 (2001), 611-619.

共引文献8

同被引文献86

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部