摘要
The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In this paper, a fusion algorithm based on multisensor systems is discussed and a distributed multisensor data fusion algorithm based on Kalman filtering presented. The algorithm has been implemented on cluster-based high performance computers. Experimental results show that the method produces precise estimation in considerably reduced execution time.
The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In this paper, a fusion algorithm based on multisensor systems is discussed and a distributed multisensor data fusion algorithm based on Kalman filtering presented. The algorithm has been implemented on cluster-based high performance computers. Experimental results show that the method produces precise estimation in considerably reduced execution time.
基金
ProjectsupportedbyScienceFoundationofShanghaiMunicipal CommissionofScienceandTechnology(GrantNo.00JC14052)