期刊文献+

一类特殊的分块循环矩阵的准对角化问题(英文)

Diagonalization of a Special Kind of Block Circulant Matrices
下载PDF
导出
摘要 本文主要探讨了一类特殊的分块循环矩阵的准对角化问题,给出了它的相似类. In this paper, we mainly discuss the diagonalization of a special kind of block circulant matrices.
出处 《洛阳师范学院学报》 2006年第2期5-7,共3页 Journal of Luoyang Normal University
关键词 分块循环矩阵 对角化 反Hermite准对角矩阵 block circulant matrix diagonalization skew Hermitian block diagonal matrix
  • 相关文献

参考文献1

二级参考文献11

  • 1Davis, P. J. ,Circulant Matrices, New York:John Wiley & Sons, 1979.
  • 2Mao Gangyuan,Circulant Matrices and Their Applications on Molecular Vibration,Wuhan:Huazhong University of Technology Press, 1995.
  • 3Cao Zhihao, A note on symmetric block circulant matrix, J. Math. Res. Exposition, 1990,10 (3) : 469-473.
  • 4Harary,F. , Schwenk, A. J. , Which graphs have integral spectra? Graphs and Combinatorics, Lecture Notes in Mathematics 406, Berlin : Springer-Verlag, 1974,45-51.
  • 5Biggs, N. , Algebra Graph Theory, Cambridge : Cambridge University Press, 19 93
  • 6Schwenk, A. J. , Wilson, R. J. , On the eigenvalues of a graph, In:L. W. Beineke and R. J. Wilson Eds. , Selected Topics in Graph Theory Algebra Graph Theory, London : Acadenmic Press, 1978,307-336.
  • 7Harary, F. ,Graph Theory, Massachusetts : Addsion-Wesley Publishing Company, 1969.
  • 8Mohar,B. ,The Laplacian spectrum of graphs,Graph Theory,In : Y. Alavi et al. eds. , Combinatorics and Applications ,New York :John Wiley, 1991,871-898.
  • 9Grone, R. , Merris, R. , The Laplacian spectrum of a graph Ⅱ, SIAM J. Discrete Math. , 1994,7 (2)221-229.
  • 10Merris ,R. ,Degree maximal graphs are Laplacian integral ,Linear Algebra Appl. , 1994,199:381-389.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部