期刊文献+

STEADY-STATE RESPONSE OF A TIMOSHENKO BEAM ON AN ELASTIC HALF-SPACE UNDER A MOVING LOAD 被引量:2

STEADY-STATE RESPONSE OF A TIMOSHENKO BEAM ON AN ELASTIC HALF-SPACE UNDER A MOVING LOAD
下载PDF
导出
摘要 By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Based on the relative relation of wave velocities of the half-space and the beam, four cases with the combination of different parameters of the half-space and the beam, the system of soft beam and hard half-space, the system of sub-soft beam and hard half- space, the system of sub-hard beam and soft half-space, and the system of hard beam and soft half-space are considered. The critical velocities of the moving load are studied using dispersion curves. It is found that critical velocities of the moving load on the Timoshenko beam depend on the relative relation of wave velocities of the half-space and the beam. The Rayleigh wave velocity in the half-space is always a critical velocity and the response of the system will be infinite when the load velocity reaches it. For the system of soft beam and hard half-space, wave velocities of the beam are also critical velocities. Besides the shear wave velocity of the beam, there is an additional minimum critical velocity for the system of sub-soft beam and hard half-space. While for systems of (sub-) hard beams and soft half-space, wave velocities of the beam are no longer critical ones. Comparison with the Euler-Bernoulli beam shows that the critical velocities and response of the two types of beams are much different for the system of (sub-) soft beam and hard half-space but are similar to each other for the system of (sub-) hard beam and soft half space. The largest displacement of the beam is almost at the location of the load and the displacement along the beam is almost symmetrical if the load velocity is smaller than the minimum critical velocity (the shear wave velocity of the beam for the system of soft beam and hard half-space). The largest displacement of the beam shifts behind the load and the asymmetry of the displacement along the beam increases with the increase of the load velocity due to the damping and wave racliation. The displacement of the beam at the front of the load is very small if the load velocity is larger than the largest wave velocity of the beam and the half space. The results of the present study provide attractive theoretical and practical references for the analysis of ground vibration induced by the high-speed train. By introducing the equivalent stiffness of an elastic half-space interacting with a Timoshenko beam, the displacement solution of the beam resting on an elastic half-space subjected to a moving load is presented. Based on the relative relation of wave velocities of the half-space and the beam, four cases with the combination of different parameters of the half-space and the beam, the system of soft beam and hard half-space, the system of sub-soft beam and hard half- space, the system of sub-hard beam and soft half-space, and the system of hard beam and soft half-space are considered. The critical velocities of the moving load are studied using dispersion curves. It is found that critical velocities of the moving load on the Timoshenko beam depend on the relative relation of wave velocities of the half-space and the beam. The Rayleigh wave velocity in the half-space is always a critical velocity and the response of the system will be infinite when the load velocity reaches it. For the system of soft beam and hard half-space, wave velocities of the beam are also critical velocities. Besides the shear wave velocity of the beam, there is an additional minimum critical velocity for the system of sub-soft beam and hard half-space. While for systems of (sub-) hard beams and soft half-space, wave velocities of the beam are no longer critical ones. Comparison with the Euler-Bernoulli beam shows that the critical velocities and response of the two types of beams are much different for the system of (sub-) soft beam and hard half-space but are similar to each other for the system of (sub-) hard beam and soft half space. The largest displacement of the beam is almost at the location of the load and the displacement along the beam is almost symmetrical if the load velocity is smaller than the minimum critical velocity (the shear wave velocity of the beam for the system of soft beam and hard half-space). The largest displacement of the beam shifts behind the load and the asymmetry of the displacement along the beam increases with the increase of the load velocity due to the damping and wave racliation. The displacement of the beam at the front of the load is very small if the load velocity is larger than the largest wave velocity of the beam and the half space. The results of the present study provide attractive theoretical and practical references for the analysis of ground vibration induced by the high-speed train.
出处 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第1期26-39,共14页 固体力学学报(英文版)
基金 Project supported by the National Natural Science Foundation of China (No.50538010) the Doctoral Education of the State Education Ministry of China (No.20040335083) Encouragement Fund for Young Teachers in University of Ministry of Education.
关键词 critical velocities equivalent stiffness Timoshenko beam HALF-SPACE moving load dispersion curve critical velocities, equivalent stiffness, Timoshenko beam, half-space, moving load,dispersion curve
  • 相关文献

参考文献2

  • 1A. S. J. Suiker,R. de Borst,C. Esveld.Critical behaviour of a Timoshenko beam-half plane system under a moving load[J].Archive of Applied Mechanics (-).1998(3-4)
  • 2Dr. J. J. Labra.An axially stressed railroad track on an elastic continuum subjected to a moving load[J].Acta Mechanica (-).1975(1-2)

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部