期刊文献+

几类有趣图的邻点可区别全染色 被引量:1

The adjacent vertex-distinguishing total coloring of some classes of funny graphs
下载PDF
导出
摘要 在正常全染色的定义下,使得任两相邻顶点的色集不同,这就是邻点可区别全染色.顶点v的色集是v的颜色其与及v关联的所有边的颜色.我们给出了几类有趣图的邻点可区别全色数. Under the definition of proper total coloring of a graph, an adjacent vertex-distinguishing total coloring means that none of the two adjacent vertices is incident with the same set of colores. The coloring set of vertex v is the colors assigned to v and the edges incident to v. The adjacent vertex-distinguishing total chromatic number about some classes of funny graphs are provided.
作者 董海燕 孙磊
出处 《山东科学》 CAS 2006年第2期9-11,共3页 Shandong Science
基金 国家自然科学基金(10471078)
关键词 简单连通图 邻点可区别全染色 邻点可区别全色数 simple, connected graph the adjacent vertex-distinguishing total coloring the adjacent vertex-distinguishing total chromatic number
  • 相关文献

参考文献4

  • 1Zhang ZF,Liu LZ,Wang JF.Adjacent strong edge coloring of graphs[ J].Applied Mathematics Letters,2002,15:623-626.
  • 2Zhang Z F,et al.On the adjacent vertex-distinguish total coloring of graphs[ J].science in china(ser A),2004,10:574-583.
  • 3Bollobas B.Modem graph theory[ M ].New York:Springer-Verlag,Inc,1998.
  • 4Dietel Reinhard.Graph theory[ M ].New York:Springer-Verlag,Inc,1997.

同被引文献10

  • 1董海燕,孙磊,孙艳丽.关于邻点可区别全染色的几个新结果[J].广西师范大学学报(自然科学版),2005,23(3):41-43. 被引量:8
  • 2Griggs J R, Yeh R K. Labeling graphs with a condition at distance two[J]. SIAM J Discrete Math,1992 ,5(4) :586-595.
  • 3Georges J P, Mauro D W, Stein M I. Labelling products of complete graphs with a condition at distance two [ J ]. SIAM J Discrete Math,2001,14( 1 ) : 28-35.
  • 4Georges J P, Mauro D W, Whittles M A. Relating path covering to vertex labellings with a condition at distance two[ J ]. Discrete Math, 1994,135 (1-3) : 103-111.
  • 5Havet F, Yu M L. (p,1)-Total labeling of graphs[J]. Discrete Math, 2008,308(4) : 496-513.
  • 6Chang G J, ke W T, Yeh R K, et al. On L(d,1 )-labeling of graphs[J]. Discrete Math,2000,220:57-66.
  • 7Whittles M A, Georges J P, Mauro D W. On the A-number of Qn and related graphs [ J ]. SIAM J Discrete Math, 1995,8 (4) : 499-506.
  • 8C HEN Dong, WANG Wei-fan. ( 2,1 ) -Total labeling of outer planar graphs [ J ]. Discrete Applied Mathematics,2007,155:2585- 2593.
  • 9Bollobas B. Modem graph theory[ M]. New York: Springer-Verlag, 1998:145-177.
  • 10Bondy J A, Murty U S R. Graph theory with applications [ M ]. London:Macmillan Press Ltd, 1976.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部