期刊文献+

复合图点列表着色的可选性(英文)

The Choosability of the Composition Graphs
下载PDF
导出
摘要 r部完全图Km*r是完全图Kr与空图Sm的复合图Kr[Sm] . Erdo。s P, Rubin A L和Taylor H在[1]提到了确定Kr[Sm]的点列表着色的可选性的问题并证明了ch(Kr[S2]) = r .Kierstead H A[2]证明了ch(Kr[S3]) =[(4r - 1)/3] .假定Gm是圈Cn与空图Sm的复合图Cn[Sm] .考虑了Gm的列表着色的可选性并证明了ch(G2) =3, ch(G3)≤ 4及在n是奇数时, ch(G3) = 4 . The complete r -partite graph Km·r with m vertices in each part is the composition graph Kr[Sm] of the complete graph K, by an empty graph Sm with m vertices. Erdos P, Rubin A L, and Taylor H mentioned the problem of determining the choosability of Kr[Sm] and obtained ch(Kr[S2]) = r. Kierstead H A proved ch(Kr[S3]) = [(4r - 1)/3]. Let Gm be the composition graph Cn[Sm] of an n -cycle Cn by Sm. In this paper we consider the problem of determining the choosability of Gm and obtain ch (G2) = 3 and ch (G3) ≤ 4 , and ch (G3) = 4 if n is odd.
出处 《新疆大学学报(自然科学版)》 CAS 2006年第2期137-140,共4页 Journal of Xinjiang University(Natural Science Edition)
基金 Project XJEDU2004113 supported by Education Foundation of Xinjiang
关键词 复合图 点列表着色 可选性 The composition graph List-coloring Choosable
  • 相关文献

参考文献6

  • 1ERDOS P, Rubin A L, Taylor H. Choosability in graphs[J]. Congr Numer, 1979,26:125-157.
  • 2KIERSTEAD H A. Note on the choosability ofcomplete multipartite graphs with part size three[J]. Discrete Math,2000,211:255-259.
  • 3VIZING V G. Coloring the vertices of a graph in prescribed colors[J]. Disc Anal, 1976, 29:3-10.
  • 4ALON N. Restricted colorings of graphs, Surveys in Combinatorics,Proc. 14th-British Combinatorial Conference,London MathematicalSociety Lecture Notes Series, 1993,187:1-33.
  • 5TUZA Z. Graph colorings with local constraints-a survey[J]. Discussiones Mathematicae Graph Theorey, 1997, 17(2):161-228.
  • 6GRAVIER S, Maffray F. Graphs whose choice numberis equal to their chromatic number[J]. J Graph Theory, 1998,27:87-97.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部