期刊文献+

转入盐地碱蓬谷胱甘肽转移酶和过氧化氢酶基因增强水稻幼苗对低温胁迫的抗性 被引量:30

Transferring the Suaeda salsa Glutathione S-Transferase and Catalase Genes Enhances Low Temperature Stress Resistance in Transgenic Rice Seedlings
下载PDF
导出
摘要 以水稻(OryzasativaL.)品种中花11号成熟种子为材料,利用农杆菌介导法将盐地碱蓬的GST(谷胱甘肽转移酶)单基因和GST+CAT1(catalase1)双基因转入低温敏感水稻品种中花11号,并对T4代转基因水稻幼苗的抗低温特性进行了分析。结果显示,低温处理后,转基因植株的GST和CAT活性都比未转入这两种基因的对照高;且PSII最大光化学效率也高于非转基因对照;而H2O2和MDA(malondialdehyde)的含量及细胞膜透性则低于对照。说明转基因水稻幼苗GST和GST+CAT1的表达提高了对低温胁迫的抗性。 The GST (glutathione S-transferase) and GST+CAT1 (catalase 1) of Suaeda salsa were introduced into a low temperature-sensitive rice cultivar (Oryza sativa cv. Zhonghua No. 11) by Agrobacterium tumefaciens-mediated transformation under the control of cauliflower mosaic virus (CaMV) 35S promoter, and the transformed calli and plantlets were screened on Murashige and Skoog (1962) medium supplemented with hygromycin 25 μg/mL and cefotaxime 300 μg/mL. The putative primary transformants (T0 generation) were acclimatized at 26℃/22℃ in a greenhouse for 7 d, and then transplanted to the field, where they grew up to maturity under outdoor conditions. 25 and 14 independent transgenic lines of T1 generation carrying the GST and GST+ CAT1 genes, respectively, were identified by PCR amplification. Transgene expression was monitored by RNA-blot hybridization using total RNA samples from leaf tissues (Figs. 1, 2). To investigate whether express- ing the Suaeda salsa GST and GST+CAT1 in transgenic rice increased low temperature stress tolerance, the T4 14-day-old transgenic and non-transgenic rice seedlings were transferred to a low temperature (day 7℃/night 4℃) growth chamber for 3-6 d. The experimental data showed that expressing the Suaeda salsa GST and GST+CAT1 enhanced low temperature stress resistance in transgenic rice seedlings. When treated with low temperature, both GST and CAT activity increased in the transformants with the time of temperature treatment (Figs.8, 9A,B). These transgenic rice plant seedlings exhibited a higher level of photosynthetic capacity than those of the non-transgenic control seedlings under low temperature treatment (Fig.3). Whereas, there were lower H2O2 (Fig.4) and MDA (malondialdehyde) content (Fig.6), and relative electrolyte leakage through the plasma membrane was also lower in transgenic rice seedlings than in the parent line under low temperature condition (Fig.5). The results also indicated that GST+CAT1 co-expression conferred greater level of low temperature stress tolerance to the transformed rice plants compared to the single GST transformed plants.
出处 《植物生理与分子生物学学报》 CAS CSCD 北大核心 2006年第2期231-238,共8页 Journal Of Plant Physiology and Molecular Biology
基金 国家高技术研究发展(863)计划(No.2002AA629080)资助。~~
关键词 转基因水稻 低温胁迫 共表达 过氧化氢酶 谷胱甘肽转移酶 transgenic rice low temperature stress co-expression GST CAT1
  • 相关文献

参考文献28

  • 1Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
  • 2Dietz KJ (2003), Redox control, redox signaling and redox homeostasis in plant cells. Int Rev Cytol 228:141-193.
  • 3Fath A, Bethke P, Beligni V, Jones R (2002). Active oxygen and cell death in cereal aleurone cells. J Exp Bot 53(372): 1273- 1282.
  • 4Foyer CH, Noctor G (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355-364.
  • 5Gao XH, Ren ZH, Zhao YX, Zhang H (2003). Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133:1873-1881.
  • 6Gupta AS, Webb RP, Holaday AS, Allen RD (1993). Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103:1067-1073.
  • 7Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189-198.
  • 8Jang IC, Nahm BH, Kim JK (1999). Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Mol Breed 5:453-461.
  • 9Kampranis SC, Damianova R, Atallah M, Toby G, Kondi G, Tsichlis PN, Makris AM (2000). A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J Biol Chem 275(38): 29207-29216.
  • 10LinZF(林植芳) LiSS(李双顺) LinGZ(林桂珠)GuoJY(郭俊彦).The accumulation of hydrogen peroxide in senescencing leaves and chloroplasts in relation to lipid peroxidation[J].植物生理学报,1988,14(1):16-22.

二级参考文献17

  • 1赵世杰.抗坏血酸含量及抗坏血酸过氧化物酶活性的测定[A].汤章城主编.现代植物生理学实验指南[C].北京:科学出版社,1999.315-316.
  • 2SHEN W B(沈文飚) XU L L(徐朗莱) YIE M B(叶茂柄) et al.Study on determination of ASP activity[J].Plant Physiology Communications(植物生理学通讯),1996,32(3):203-205.
  • 3张宪政主编.作物生理研究法[M].北京:农业出版社,1990.142-143.
  • 4ПОЧИНОКХН 荆家海 丁钟荣译.植物生物化学分析方法[M].北京:科学出版社,1981.255-259.
  • 5Aono M, Kubo A, Saji H,Tanaka K(1993). Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol, 34:129-136
  • 6Allen RD(1995). Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol, 107:1-7
  • 7Bowler C, Slooten L, Vandenbranden S(1991).Manganese superoxidase dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J, 10:1723-1732
  • 8Broadbent P, Creissen GP, Kular B(1995). Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J, 8:247-255
  • 9Chomczynski P, Sacchi N(1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem, 162(1): 156-159
  • 10Gronwald JK, Plaisance KL(1998). Isolation and characterization of glutathione s-transferase isozemes from Sorghum. Plant Physiol, 117:877-892

共引文献102

同被引文献534

引证文献30

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部