期刊文献+

双曲空间H^(n+p)(-1)中具有常数量曲率的完备子流形

Complete Submanifolds in Hyperbolic Space H^(n+p)(-1) With Constant Scalar Curvature
下载PDF
导出
摘要 研究了Mn是Hn+p(-1)中具有常数量曲率的n维完备子流形,证明了这种完备子流形的一个内蕴刚性分类定理,并对超曲面的情形也进行了研究。 To study the complete submanifolds in hyperbolic space with constant normalized scalar curvature R. obtain an intrinsic rigidity theorem and give the characterization of the submanifolds as well as hypersurface.
出处 《咸阳师范学院学报》 2006年第2期1-6,共6页 Journal of Xianyang Normal University
基金 国家自然科学基金项目(69972036) 陕西省自然科学基金项目(2003A02) 陕西省教育厅自然科学基金项目(03JK215)
关键词 双曲空间 子流形 常数量曲率 全脐 Hyperbolic space normalized scalar curvature submanifolds umbilical
  • 相关文献

参考文献12

  • 1Shen Yibing. Complete submanifolds in R^n+p with parallel mean curvature vector[J]. Chin Ann of Math, 1985,3 (6B):345-350.
  • 2Xu H W. A rigidity theorem for submanifolds with parallel mean curvature vector in a sphere [J].Areh Math,1993,61 :489-496.
  • 3Zhou C H, Chen Z H.Submanifolds in hyperbolic space with parallel mean curvature vector [J].J of Tongji University, 2002, (6) : 768-772.
  • 4Cheng S Y , Yau S T. Hypersurfaces with constant scalar curvature [J].Math .Ann. 1977,225 : 195-204.
  • 5Cheng Q M.Submanifolds with constant scalar curvature[J].Proc Royal Society Edinbergh 131A (to appear).
  • 6Alencar H, Carmo M P.Hypersurfaces with constant mean curvature in spheres [J].Proc Amer Math Soc, 1994,120: 1223-1229.
  • 7Omori H. Isometric immersion of Riemmanian manifolds[J]. J Math Soc Japan,1967,19:205-214.
  • 8Yau S T.Harmonic functions on complete Riemannian manifolds Comm [J].Pure and Appl Math,1975,28: 201-228.
  • 9Santos W. Submanifolds with parallel mean curvature vector in Spheres[J]. Tohoku Math J, 1994,46:403-415.
  • 10Li A M,Li J M. An intrinsic rigidity theorem for minimal submanifolds in a sphere[J].Arch Math, 1992,58:582-594.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部