摘要
针对制冷系统被控对象模型建立了一个基本模糊控制器,并给出一组较优量化因子,在此基础上建立和训练了一个模糊神经网络控制器,并在MATLAB仿真环境下对制冷模糊控制进行仿真和优化。根据得到的一系列仿真结果对所设计的制冷模糊控制系统性能进行了分析,探讨了神经网络训练样本数据对FNNC系统控制性能的影响,结果表明采用合理的样本数据可以优化模糊神经网络制冷控制系统。
In this paper, in accordance with the mathematical model of Refrigeration system, a common fuzzy controller is created firstly. Then a group of quantitative factor with better control behavior is offered, on the base of which a Fuzzy Neural Networks Controller(FNNC) is created and trained. The FNNC is then used to control the Refrigeration system in the MATLAB environment and with a group of simulation results as well as according analytic data the author' s comments on the advantages of ANNC is given.
出处
《机械设计与制造》
北大核心
2006年第4期75-77,共3页
Machinery Design & Manufacture
基金
湖北自然科学基金项目(2004ABA027)
关键词
模糊控制器
模糊神经网络
BP算法
制冷空调控制
Fuzzy controller
Fuzzy neural networks
BP algorithm
Refrigeration and Air - Conditioning control