期刊文献+

用于可疑金融交易监控的对比离群点检测模型 被引量:7

A Peer-group Outlier Detection Definition Model Applied to Suspicious Financial Transaction Surveillance
下载PDF
导出
摘要 对基于单数据集和多数据集的离群点算法进行研究,提出一个基于距离模式进行数据集间参照对比的离群点判别模型,该模型通过数学定义清晰描述了参照集和对比集之间离群点模式的判别检测关系,为深入研究切合金融数据挖掘特点的算法建立形式化描述体系。这一模型也可推广应用于网络入侵检测、财务审计、图像识别、电子商务、医疗疫情监测等领域。 Outlier detection is a key element of financial surveillance systems which intend to identify credit card fraud, loan claim fraud and money laundering by discovering suspicious transaction. Financial outlier detection techniques generally fall into two categories, comparing every transaction against its account history and further more, comparing against a peer group to determine if the behavior is unusual, The later approach shows particular merits in efficiently extracting suspicious transaction and reducing false positive rate. Peer group analysis concept is largely dependent on a cross-datasets outlier detection model. The paper has intensively studied outlier detection among single data.set and cross datasets. An outlier detection model based on two peer datasets reference has been proposed incorporated with financial surveillance requests. The mathematical definition based on distance joined with local density gives an explicit the comparison procedure and discrimination criteria. It can be applied to IDS, auditing, health monitoring as well.
作者 汤俊 熊前兴
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2006年第4期112-115,共4页 Journal of Wuhan University of Technology
基金 "十五"攻关计划(2004BA721A02)
关键词 离群点监测 跨数据集 金融监管 数据挖掘 outlier detection cross data.sets financial regulation data mining
  • 相关文献

参考文献12

二级参考文献32

  • 1Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying density-based local outliers [ J ]. ACM SIGMOD Conference Proceedings, 2000, 29(2): 93-104.
  • 2Chen Z, Fu A, Tang J. Modeling and efficient mining of intentional knowledge of outliers [ A ]. In: Srikurnar K, Bhasker B, eds. Proceedings of the Seventh International Database Engineering and Applications Symposium Conference[C]. Hong Kong, 2003. Washington DC: IEEE Computer Society, 2003. 44-53.
  • 3Knorr E M, Ng R T. Finding intensional knowledge of distance-based outliers[A]. In: Atkinson M P, Orkiwsja M E, eds. Proc of the 25th VLDB Conference[C]. Edin Burgh, 1999. San Francisco. Morgan Kaufmann. 211-222.
  • 4Knorr E M, Ng R T. Algorithms for mining distancebased outliers in large datasets[A]. In: Ashish Gupta, Oded Shmueli, eds. Proc of the 24^th VLDB Conference [C]. New York, 1998. San Francisco: Morgan Kanfmann, 1998. 392-403.
  • 5Pei J, Han J. Constrained frequent pattern mining: a pattern-growth view[J]. ACM SIGKDD (Special Issue on Constrained Data Mining), 2002, 4(1). 31-39.
  • 6Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. Knowledge discovery and data mining: towards a unifying framework. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 82~88.
  • 7Ng, R. T., Han, J. Efficient and effective clustering methods for spatial data mining. In: Bocca, J.B., Jarke, M., Zaniolo, C., eds. Proceedings of the 20th International Conference on Very Large Data Bases. Santiago: Morgan Kaufmann, 1994. 144~155.
  • 8Ester, M., Kriegel, H.-p., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 226~231.
  • 9Zhang, T., Ramakrishnan, R., Linvy, M. BIRCH: an efficient eata clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Montreal: ACM Press, 1996. 103~114.
  • 10Wang, W., Yang, J., Muntz, R. STING: a statistical information grid approach to spatial data mining. In: Jarke, M., Carey, M.J., Dittrich, K.R., et al., eds. Proceedings of the 23rd International Conference on Very Large Data Bases. Athens, Greece: Morgan Kaufmann, 1997. 186~195.

共引文献65

同被引文献55

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部