期刊文献+

奇网络及包络图 被引量:2

Nonbipartite Network and Envelope Graphs in It
下载PDF
导出
摘要 本文提出了奇网络内存在包络图的理论,揭示了包络图与网络流以及独立集等之间的重要关系,并成功地对奇网络进行了分解,给出了一般奇网络内求最大独立集的新算法。 Envelope Graph introduced in this paper is a natural structure in a network. Both bipartite and nonbi-partite networks can be decomposed ,into a series of negative and reversal negative envelope graphs alternatively distributed without exception. The closed characteristics of envelope graphs make it possible to detect and search in subnetworks instead of in an integrated large scale network without losing global optimal solution. Especially, we found that negative envelope graphs are closely related to many important issues in graph theory. For instance,by use of negative envelope graph, a polynomial algorithm of Maximum Indepen- . dent Set in general nonbipartite network is presented in this paper.
作者 朱松年 朱嫱
出处 《铁道运输与经济》 北大核心 1996年第4期2-7,共6页 Railway Transport and Economy
基金 国家教委博士学科点基金
关键词 奇网络 独立集 包络图 网络流 : nonbipartite network negative envelopegraph,maximum flow,augment tree,independent set
  • 相关文献

参考文献1

共引文献2

同被引文献2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部