期刊文献+

质心坐标变换及其在纹理映射均匀化中的应用 被引量:2

Barycentric Coordinate Mapping and Its Application in Uniform Texture Mapping
下载PDF
导出
摘要 在现有质心坐标变换方法基础上,提出一种改进方法———均匀面积质心变换方法:在某一顶点邻域中,采用相应点所对应的边高比之和作为质心坐标进行分析推导,并将其应用到复杂三维形体的纹理映射均匀化中·首先通过面积权重质心坐标变换将复杂三维网格映射到平面上;在此基础上进行均匀面积质心坐标变换,就可使平面网格较均匀地分布·求解其纹理坐标可实现采用单幅图像的纹理映射均匀化·通过典型三维模型的实验和比较可以看到:采用文中方法所获得的纹理映射均匀化效果较现有的保角变换、保面积变换方法有显著改善,而且算法简单、稳定、快速· Based on available barycentric coordinate mappings, a so-called UAM (uniform area mapping) barycentric coordinate mapping method is proposed. It uses such a weight as the barycentric coordinate, which is the sum of two ratios of the edge and the height of a neighboring vertex corresponding to a given inner vertex in a triangle mesh. Analyses and derivation of UAM are given. The UAM is used in uniform texture mapping of complex 3D meshes through two steps: firstly an area barycentric coordinate mapping is used to map a 3D mesh into a square, then the UAM is used to map the non-uniform mesh square to a uniform mesh square. After calculating the texture coordinates in the uniform mesh, a fairly uniform texture mapping can then be realized for complex 3D meshes that only use one texture image. Experiments and comparisons are taken with representative 3D meshes, which reveals that our method has obvious improvement in uniform texture mapping than available conformal mapping methods and authalic mapping methods. The algorithm is simple, stable and fast.
作者 郑飞 陈梅
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第4期482-486,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家留学回国人员科研基金(200108)
关键词 质心坐标变换 纹理映射 均匀化映射 三维网格 barycentric coordinate mapping texture mapping uniform mapping
  • 相关文献

参考文献8

  • 1Floater M. Parametrization and smooth approximation of surface triangulations[J]. Computer Aided Geometric Design, 1997, 14(2): 231-250
  • 2Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes[J]. Computer Graphics Forum, 2002, 21(3): 209-218
  • 3Meyer M, et al. Generalized barycentric coordinates on irregular polygons[J]. Journal of Graphics Tools, 2002, 7(1): 13-22
  • 4Sander P, et al. Texture mapping progressive meshes[C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angles, 2001: 409-416
  • 5Sander P, et al. Multi-chart geometry images[C]//Proceedings of Eurographics Symposium on Geometry Processing, Aachen, 2003: 146-155
  • 6Praun E, Hoppe H. Spherical parametrization and remeshing[C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, San Diego, 2003: 340-349
  • 7冯结青,赵豫红.均值重心坐标的鲁棒算法及其几何性质[J].计算机辅助设计与图形学学报,2004,16(6):772-776. 被引量:7
  • 8彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16(6):731-739. 被引量:34

二级参考文献71

  • 1胡国飞,方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报,2004,16(5):632-637. 被引量:13
  • 2Praun E, SweldensW, Schroder P. Consistent mesh parameterizations[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2001. 179~184
  • 3Lee Y, Kim H S, Lee S. Mesh parameterization with a virtual boundary[J]. Computers & Graphics, 2002, 26(5): 677~686
  • 4Farin G. Curves and Surfaces for Computer Aided Geometric Design[M]. 3rd ed. San Diego: Academic Press, 1993
  • 5Pinkall U, Polthier K. Computing discrete minimalsurfaces and their conjugates[J]. Experimental Mathematics, 1993, 2(1): 15~36
  • 6Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes[J]. Computer Graphics Forum, 2002, 21(3): 209~218
  • 7Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19~27
  • 8Levy B, Mallet J-L. Non-distorted texture mapping for sheared triangulated meshes[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, 1998. 343~352
  • 9Greiner G, Hormann K. Interpolating and Approximating Scattered 3D Data with Hierarchical Tensor Product B-Splines[M]. In: Meheute A L, Rabut C, Schumaker L L, eds. Surface Fitting and Multiresolution Methods. Nashville, Tennessee: Vanderbilt University Press, 1997. 163~172
  • 10Wachspress Eugene A Rational Finite Element Basis[M] New York: Academic Press, 1975

共引文献38

同被引文献17

  • 1彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16(6):731-739. 被引量:34
  • 2吴福理,石教英.基于三角块的曲面纹理合成[J].计算机辅助设计与图形学学报,2005,17(2):236-242. 被引量:10
  • 3晏冬梅,张丽艳.几种典型三角网格曲面参数化方法的分析与比较[J].机械制造与自动化,2005,34(3):48-51. 被引量:3
  • 4郭延文,潘永娟,崔秀芬,彭群生.基于调和映射的约束纹理映射方法[J].计算机辅助设计与图形学学报,2005,17(7):1457-1462. 被引量:13
  • 5Sheffer A,Praun E,Rose K.Mesh parameterization methods and their applications[J].Foundations and Trends in Computer Graphics and Vision,2006,2(2):105-171.
  • 6Hormann K,Levy B,Sheffer A.Mesh parameterization:Theory and practice[C].International Conference on Computer Graphics and Interactive Techniques,2007.
  • 7Zayer R,R(o)ssl C,Seidel HP.Setting the boundary free:a composite approach to surface parameterization[C].ACM International Conference Proceeding Series,2005:91-100.
  • 8Tao Ju,Scott Schaefer,Joe Warren.Mean value coordinates for closed triangular meshes[J].ACM Transactions on Graphics,2005,24(3):561-566.
  • 9Efros A A,Leung T K.Texture synthsis by nonparametric sampling[C]// Proceedings of International Conference on Computer Vision, Greece, 1999: 1033-1038.
  • 10Xu Y,Guo B,Shum H Y.Chaos mosaic:fast and memory efficient texture synthesis,MSRTR-2000-32[R].Microsoft Research,2000.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部