期刊文献+

基于控制理论的微粒群算法分析与改进 被引量:4

Analysis and Improvement About Particle Swarm Optimization Based on Linear Control Theory
下载PDF
导出
摘要 利用控制理论对基本微粒群算法、标准微粒群算法及带有收缩因子的微粒群算法进行了详细的分析,结果表明它们或为一个积分环节与两个惯性环节组成的系统;或为三个惯性环节组成的系统.为了提高算法效率,建立了由积分环节与震荡环节组成的系统所对应的改进微粒群算法,并讨论了参数的选择方法.仿真实例证明了该算法的正确性与有效性. Using control theory, three different particle swarm optimization (PSO), such as basic PSO, standard PSO and PSO with constriction factor were analyzed in detail, the results showed that the evolution equations were composed of both integral elements and inertia elements or inertia elements only. To improve the calculation efficiency, the inertia elements in evolution equations were modified to the oscillation elements and the corresponding algorithm and the coefficients selection principles were discussed. The optimization computing of some examples was made to show the new algorithm has better global search capacity and rapid convergence rate.
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第5期849-853,共5页 Journal of Chinese Computer Systems
基金 教育部科学技术重点项目(204018)资助
关键词 微粒群算法 控制理论 惯性环节 震荡环节 particle swarm optimization control theory inertia element sscillation element
  • 相关文献

参考文献13

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[C]. In:Proceedings of IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway, NJ,1995, 1942-1948.
  • 2Engelbrecht A P, Ismail A. Training product unit neural networks, stability and control [J]. Theory and Applications,1999,2(1-2) :59-74.
  • 3Kennedy J. The particle swarm: social adaption of knowledge[C]. In: Proceedings of the International Conference on Evolutionary Computation, USA, 1997, 303-308.
  • 4Parsopoulos K E, Plagianakos V P, Magoulas G D. Improving the particle swarm optimizer by function“stretching”[A]. In:Hadjisavvas N, Pardalos P M eds. , Advances in Convex Analysis and Global Optimization[M]. Kluwer Academic Publishers,2001, 445-457.
  • 5Coello Coello C A, Lechuga M S. MOPSO: a proposal for multiple objective particle swarm optimization [C]. Honolulu,Hawaii USA. IEEE Congress on Evolutionary Computation,2002, 1135-1138.
  • 6Kennedy J,Eberhart R C. A discrete binary version of the particle swarm algorithm[C]. In: Proceedings of the Conference on System, Man and Cybernetics, 1997, 4104-4109.
  • 7Shi Y, Eberhart R C. A modified particle swarm optimizer[C].In: Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, 1998, 125-128.
  • 8Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]. In:Proceedings of the Congress on Evolutionary Computation, Washington D. C,USA, 1999, IEEE Service Center, Piscataway, NJ, 1951-1957.
  • 9Angeline P J. Using selection to improve particle swarm optimization[C]. In: Proceedings of International Joint Conference on Neural Networks'99, Washington DC, USA, 1999, 84-89.
  • 10Lovbjerg M. Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations[C]. In: Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, USA, 2001, 135-138.

二级参考文献7

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975

共引文献159

同被引文献38

引证文献4

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部