期刊文献+

多处理器计算环境中基于能量节约的实时动态调度算法 被引量:3

Real-Time Dynamic Scheduling Algorithms for the Savings of Power Consumption in Multi-processor Computing Environment
下载PDF
导出
摘要 当前处理器由于较高的能量消耗,导致处理器热量散发的提高及系统可靠性的降低,已经成为目前计算机领域较为关心的问题.然而目前一些有效降低能量消耗的技术大多针对单处理器系统,较少考虑多处理器系统.提出的调度算法针对多处理器计算环境,以执行时间最快的任务优先调度为基础,结合其它有效技术(共享空闲时间回收),使得实时任务在其截止期内完成的同时能够有效地减低整个系统的能量消耗.针对独立任务集及具有依赖关系的任务集,提出两种针对同构计算环境的算法:STFBA1(Shortest-Task-First-BasedAlgorithm)及STFBA2,及两钟针对多任务集的算法HSA1(HybridSchedulingAlgorithm)及HAS2.在单任务集计算环境下,与目前所知的有效算法相比,算法具有更好的性能(调度长度及能量消耗).在多任务集计算环境下,基于混合调度策略的算法能够明显改进调度性能. At present the high power consumption of modern processors becomes a major concern due to the fact that it leads to increased heat dissipation and decreased reliability of systems. Many techniques have been proposed to reduce power consumption for uniprocessor systems, while less work have taken multiprocessor systems into account. The algorithms proposed in this paper are based on the strategy of least execution time first, focusing on multiprocessor systems and combining with other efficient technique(shared slack reclamation), consequently, not only the real-time tasks can be completed before deadline but also the global power consumption of systems will be reduced. In this paper, we present two algorithms : STFBA1 (Shortest Task-First-Based Algorithm) and STFBA2 to cope with independent task sets and task sets with precedence in homogeneous systems respectively. Moreover, we extend our strategy to multiple task sets, and present two algorithms:HSA1 (Hybrid Scheduling Algorithm) and HSA2 Compared to the efficient algorithm for single task set so far, our algorithms show much better scheduling performance in terms of makespan and power consumption. For multiple task sets, the algorithms based on hybrid strategy obviously improve the scheduling performance.
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第5期866-872,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60273075 60503048)资助
关键词 实时系统 多处理器系统 调度算法 能量消耗 real-time systems multiprocessor systems scheduling algorithm power consumption
  • 相关文献

参考文献1

二级参考文献13

  • 1M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H.Freeman and Co., 1979.
  • 2H. EI-Rewini, T. G. Lewis, H. H. All. Task Scheduling in Parallel and Distributed System. Englewood Cliffs, New Jersey:Prentice Hall, 1994.
  • 3G.-L. Park, B. Shirazi, J. Marquis, et al.. Decisive path scheduling : A new list scheduling method. The 6th Int'l Conf. on Parallel Processing, Bloomington, 1997.
  • 4A. Radulescu, A. J. C. van Gemund. FLB: Low cost task scheduling for distributed-memory machines. IEEE Trans. on Parallel and Distributed Systems, 2002, 13(6) : 648-- 658.
  • 5S. J. Russell, P. Norving. Artificial Intelligence: A Modern Approach. Englewood Cliffs, New Jersey: Prentice-Hall, 1995.
  • 6G. C. Sih, E. A. Lee. A compile-time scheduling heuristic for interconnection- constrained heterogeneous processing architectures. IEEE Trans. on Parallel and Distributed Systems,1993, 4(2): 75--87.
  • 7A. Gerasoulis, T. Yang. On the granularity and clustering of directed acyclic task graphs. IEEE Trans. on Parallel and Distributed Systems, 1993, 4(6) : 686-- 701.
  • 8M. A. Palis, J. Liou, D. S. L. Wei. Task clustering and scheduling for distributed memory parallel architectures. IEEE Trans. on Parallel and Distributed Systems, 1996, 7(1) : 46--55.
  • 9E. S. H. Hou, N. Ansali, H. Ren. A genetic algorithm for muhiprocessor scheduling. IEEE Trans. on Parallel and Distributed Systems, 1994, 5(2): 113--120.
  • 10M. Sakawa, T. Mari. Efficient genetic algorithms for job-shop scheduling problems with fuzzy processing time and fuzzy duedate. Computers and Industrial Engineering, 1999, 36(2): 325--341.

共引文献11

同被引文献24

  • 1Burd T D, et al. Energy efficient CMOS Micro-processor design [C]. Proc. Hawaii Int'l Conf. System Science, 1995,288-297.
  • 2Chandrakasan A, et al. Low-power CMOS digital design[J]. IEEE J. Solid-State Circuit, 1992, 27(4):473-484.
  • 3Gruian. System-level design methods for low-energy architectures containing variable voltage processors [C]. Proc. Workshop Power-Aware Computing Systems, 2000.
  • 4Yao F, Demers A, Shenker S. A scheduling model for reduced CPU energy [C]. Proc. 36th Symp. Foundations of Computer Science, 1995,374-382.
  • 5Krishna C M,Lee Y H. Voltage clock scaling adaptive scheduling techniques or low power in hard real-time systems [C]. Proc. 6th IEEE Real-Time Technology and Applications Syrup. , 2000.
  • 6Venkat Rao, Nicolas Navet, Gaurav Singhal, et al. Battery aware dynamic scheduling for periodic task graphs [C]. The 14th International Workshop on Parallel and Distributed Real- Time Systems, 2006
  • 7Hakan Aydin, Rami Melhem, Daniel Mosse. Power-aware scheduling for periodic real-time tasks [J]. IEEE Transaction on Computer, MAY 2004, 53(5) :584-600.
  • 8Chen Jian-jia, Kuo Tei-wei. Multiprocessor energy-efficient scheduling for real-time tasks with different power characteristics [C]. Proc. 2005 International Conference on Parallel Processing (ICPP'05), 2005.
  • 9Zhu Da-kai, et al. Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems[J]. IEEE Transaction on Parallel and Distributed Systems, 2003, 14(7): 686-699.
  • 10Han Jian-jun, Li Qing-hua. Dynamic power-aware scheduling algorithms for real-time task sets with fault-tolerance in parallel and distributed computing environment[C]. Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2005.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部