期刊文献+

一种挖掘Web用户访问模式的新方法MFP 被引量:1

New Kind of Data Mining Method on Web User Access Pattern
下载PDF
导出
摘要 针对用户访问模式(UserAccessPattern)问题,首次提出了一种新的挖掘方法MFP(MaximalFrequentPath),该方法采用两种兴趣度的度量标准(在考虑了用户覆盖面的同时,又考虑了个人贡献因素).MFP方法提高了挖掘算法的精度,增加了挖掘算法的可用性,能挖掘出比其它方法更具有普遍意义的模式.并通过理论推导和实验验证了它的有效性. As far as the issue on web user access pattern (the issue on traversal paths) is concerned, the thesis first introduces an approach named MFP that uses two kinds of interesting criterions to solve the issue : click ratio and percent of users. Because this approach considers both personal contribution and user' s proportion, the patterns after mining have more implied significance than those of single interesting criterions. At the same time we conduct and prove its availability from theory and practice.
作者 吕橙 易艳红
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第5期919-923,共5页 Journal of Chinese Computer Systems
基金 北京市教委科技发展计划项目(KM200510016002)资助
关键词 用户访问模式 MFP方法 点击流 path traversal pattern MFP method Click-stream
  • 相关文献

参考文献15

  • 1Zhu Ting-shao, Wang Jun. Data mining application[J]. The Computer World. 1998, 28 Sept. ,Issue 37, Technical Theme Edition. 5-8.
  • 2Wang Yu-bo. Outlook on the 21st century information technology[J]. Information and Documentation Services. 2000,10(1):66 -68.
  • 3Ming-Syan Chen, Jia-wei Han, Philip S Yu. Data mining:an overview from databases perspective[J/L]. IEEE Transaction On Knowledge And Data Engineering, 1996, 8 (6):866-883.http://citeseer.ist. psu. edu/chen97data.html .
  • 4Disembodied Click-Stream. December 2000 [EB/OL]. http://seekjob.myrice.com/dm-7.html .
  • 5Ming-Syan Chen, Jong Soo Park, Philip S. Yu. Data mining for path traversal patterns in a Web environment [C]. The 16th International Conference on Distributed Computing Systems,Hong Kong, 1996, (27-30):385-392.
  • 6Ming-Syan Chen, Jong Soo Park, Philip S. Yu. Efficient data mining for path traversal patterns[J]. IEEE Transactions on Knowledge and Data Engineering, 1998,10(2) : 209-221.
  • 7Robert Cooley, Bamshed Mobasher, and Jaideep Srivastava.Data preparation for mining world Wide Web browsing patterns[J]. Knowledge and Information System. 1999, 1(2):5-32.
  • 8Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases [C]. The Twentieth International Conference on Very Large Databases. Santiago,Chile, 1994:487-499.
  • 9Bin Lan, Stephane Bressan, and Beng Chin Ooi. Making web servers pushier[C]. Workshop on Web Usage Analysis and User Profiling (WEBKDD'99). San Diego, CA, USA. 1999,15:230-243.
  • 10Han Jia-wei, Pei Jian, Yin Yi-wen. Mining frequent patterns without candidate generation[C]. 2000 ACM-SIGMOD International Conference on Management of Data (SIGMOD'00).Dallas, Texas, 2000(14-19):1-12.

同被引文献14

  • 1CHEN M-S,PARK JS,YU PS.Data mining for path traversal pattems in a Web environment[A].The 16th International Conference on Distributed Computing Systems[C].Hong Kong,1996.385 -392.
  • 2CHEN M-S,PARK JS,YU PS.Efficient data mining for path traversal patterns[J].IEEE Transactions on Knowledge and Data Engineering,1998,10(2):209-221.
  • 3COOLEY R,MOBASHER B,SRIVASTAVA J.Data preparation for mining World Wide Web browsing patterns[J].Knowledge and Information System,1999,1 (2):5-32.
  • 4HAN J-W,PEI J,YIN Y-W.Mining frequent patterns without candidate generation[A].2000 ACM-SIGMOD International Conference on Management of Data (SIGMOD'00)[C].Dallas,Texas,USA,2000.1-12.
  • 5AGRAWAL R,SRIKANT R.Fast algorithms for mining association rules in large databases[A].The Twentieth International Conference on Very Large Databases[C].Santiago,Chile,1994.487-499.
  • 6LAN B,BRESSAN S,OOI BC.Making web servers pushier[A].Workshop on Web Usage Analysis and User Profiling (WEBKDD'99)[C].San Diego,CA,USA,1999.230-243.
  • 7AGRAWAL R,SRIKANT R.Mining sequential patterns:Generalizations and Performance Improvements[A].The 6th International World Wide Web Conference[C].Santa Clara,CA,USA,1997.30-45.
  • 8BUCHNER AG,BAUMGARTEN M,SNAND SS,et al.Navigation pattern discovery from intemet data[A].Workshop on Web Usage Analysis and User Profiling (WEBKDD-99)[C].San Diego,CA,USA.1999.132-138.
  • 9PEIJ,HANJ-W,BEHAZADM-A,etal.Mining access patterns efficiently from web log[A].The Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'00)[C].Kyoto,Japan,2000.592-598.
  • 10SHAHABI C,ZARSKI AM,SHAH V,et al.Knowledge discovery from users web-page navigation[A].The 7th International Conference on Research Issues in Data Engineering[C].Birmingham,England,1997.20-29.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部