期刊文献+

支持向量机在混沌系统预测中的应用 被引量:1

Application of Support Vector Machine to Prediction of Chaotic Systems
下载PDF
导出
摘要 提出用支持向量机回归方法解决混沌系统预测问题。阐述了支持向量机回归算法,对四阶混沌时间序列进行预测,在此基础上结合城市交通的混沌性,对珠海市迎宾大道的交通流量进行预测。仿真实验表明,支持向量机泛化能力好、学习速度快,对混沌时间序列具有很好的预测效果,对城市交通流量预测也是切实可行的。 Support Vector Machine (SVM) regression method is proposed for solving the prediction problem of chaotic systems. The algorithm of SVM regression is formulated. One application is given to the prediction of four-order chaotic time series. Based on this application and in conjunction with the chaotic characteristics of urban traffic, another application is given to the real-time prediction of the traffic flow in Zhuhai city. Simulation experiments show that SVM regression has fast learning ability and good generalization. It is very suitable for the prediction of chaotic time series, and is also effective to forecast urban traffic flow.
出处 《计算机应用研究》 CSCD 北大核心 2006年第5期161-162,168,共3页 Application Research of Computers
基金 广东省自然科学基金资助项目(021349)
关键词 支持向量机 混沌系统 交通流量 预测 Support Vector Machine Chaotic System Traffic Flow Prediction
  • 相关文献

参考文献7

二级参考文献17

  • 1[1]Rosenstein M T, Collins J J, De luca C J. A practical method for calculating largest Lyapunov exponents from small data sets [ J ].Physica D, 1992,56( 1 ) :117 ~ 134.
  • 2[2]Stoop R, Parisi J. Calculation of Lyapunov exponents avoiding spurious elements [J]. Physica D, 1991, 50( 1 ) :89 ~94.
  • 3[3]Farmer J D, Sidorowich J J. Predicting chaotic time series [ J ]Physics Review Letter, 1987,59(5 ) :845 ~ 848.
  • 4[7]Okotani I, Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filtering theory [ J ] . Transportation Research (Part B), 1994,1(8B) :1 ~11.
  • 5[9]Qiao F X, Yang H, William H K L. Intelligent simulation and prediction of traffic flow dispersion [ J ]. Transportation Research (Part R), 2001, 35(4) :843 ~863.
  • 6[10]Hossain M. Estimation of saturation flow at signalized intersections of developing cities: a miero-simulation modeling approach [J]. Transportation Research ( Part A), 2001, 35 ( 1 ): 123 ~141.
  • 7杨兆升,中国公路学报,1995年,8卷,4期
  • 8王伟,人工神经网络原理.入门与应用,1995年
  • 9Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995.
  • 10Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 1998, 2(2):1-47.

共引文献153

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部