摘要
在基于模糊模式识别的伙伴选择方法中,将TOPS IS方法借助于一个多属性决策问题的“理想解”和“负理想解”去排序的思想应用到其伙伴选择过程中,根据贴近度的公理化定义对TOPS IS方法作以修改,构造出“相对”贴近度,以此折衷地衡量动态联盟合作伙伴的优劣。避免了传统模糊模式识别单纯利用“绝对”贴近度所造成的结果均一化、可比性差的现象,从一定程度上减少了因贴近度选用的不同而造成的结果差异。从某种意义上来说,该种方法可以作为TOPS IS方法的拓展,是本文具有新意之处。
Partner selection is an important part of the formation of the VE. The author introduced an fuzzy pattern recognition model extended by TOPSIS to resolve this question. In this model, the author converted an absolute (classical) closeness degree into a relative closeness degree according to the concept of TOPSIS. The author defined the fuzzy positive ideal pattern (FPIP) and the fuzzy negative ideal pattern (FNIP). And then,considering the preference of the decision maker,the author used the weighted closeness degree to calculate the absolute closeness degree of each alternative from FPIP and FNIP, respectively. Finally, the author used an example to make a conclusion that we can decrease the difference caused by adopting the different absolute closeness degree by using the relative one. This method may be regarded as an extension of TOPSIS.
出处
《模糊系统与数学》
CSCD
北大核心
2006年第2期146-152,共7页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(7017103660274050)
关键词
模糊模式识别
TOPSIS
相对贴近度
动态联盟
Fuzzy Pattern Recognition
TOPSIS
The Relative Closeness Degree
Virtual Enterprises