期刊文献+

一种基于Grbner基和有向图的几何约束求解方法

A Geometric Constraint System Solving Approach Based on Grbner Basis and Graph Analysis
下载PDF
导出
摘要 方程组规模大和约束一致性分析方法的欠缺影响基于Gr?bner基的代数法在约束求解中的应用。针对应用有向图进行约束分解产生的强连通分量不饱和问题,提出进行强连通分量内变量匹配,以消去自由实体,从而使强连通分量趋于饱和,方程组得以简化。并以此为基础提出基于Gr?bner基进行约束一致性判别的方法。以含有冗余约束的三角形为例阐述了约束一致性分析和求解的过程。 The application of Grobner basis in geometric constraint system solving is restricted by two facts: the large scale of equations and the lack of consistency detection method. Bipartite graph matching on variable level is adopted to simplify the equations; Then a consistency detection method based on Grobner basis is presented. The process of consistency detection and constraint system solving is illustrated with an inconsistent triangle construction.
出处 《工程图学学报》 CSCD 北大核心 2006年第2期13-19,共7页 Journal of Engineering Graphics
基金 国家自然科学基金资助项目(60503069) 湖北省自然科学基金资助项目(2005ABA263)
关键词 计算机应用 几何约束求解 GROBNER基 二分图最大匹配 computer application geometric constraint system .solving Grobner basis bipartite graph maximum matching
  • 相关文献

参考文献13

  • 1Kramer G A. A geometric constraint engine [J].Artificial Intellig ence, 1992, 58: 327-360.
  • 2Aldefeld B. Variation of geometries based on a geometric-reasoning method [J]. Computer-Aided Design, 1988, 20 (3): 117-126.
  • 3Fudos I, Hoffmann C M. A graph-constructive approach to solving systems of geometric constraints[J]. ACM Transactions on Graphics, 1997, 16 (2):179-216.
  • 4Latheam R S, Middleditch A E. Connectivity analysis:a tool for processing geometric constraints [J].Computer-Aided Design, 1994, 28(11): 917-928.
  • 5Lee J Y, Kim K. A 2-D geometric constraint solver using DOF-based graph reduction [J]. Computer-Aided Design, 1998, 30(11): 883-896.
  • 6Ge J X, Chou S C, Gao X S. Geometric constraint satisfaction using optimization methods [J].Computer-Aided Design, 1998, 30(2): 867-879.
  • 7Gossard D C. Modification of geometric models though variational geometry [J]. Computer-Aided Design, 1982, 14(4): 209-214.
  • 8Gao X S, Chou S C. Solving geometric constraint systems II. A symbolic approach and decision of Rc-constructibility [J]. Computer-Aided Design, 1998,30(2): 115-122.
  • 9Kondo. Algebraic method for manipulation of dimensional relationships in geometric models [J].Computer-Aided Design, 1992, 24(3): 141-147.
  • 10Buchanan S A, Pennington A. Constraint definition system: a computer-algebra based approach to solving geometric-constraint problems [J]. Computer-Aided Design, 1993, 25(12): 740-750.

二级参考文献7

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部