摘要
方程组规模大和约束一致性分析方法的欠缺影响基于Gr?bner基的代数法在约束求解中的应用。针对应用有向图进行约束分解产生的强连通分量不饱和问题,提出进行强连通分量内变量匹配,以消去自由实体,从而使强连通分量趋于饱和,方程组得以简化。并以此为基础提出基于Gr?bner基进行约束一致性判别的方法。以含有冗余约束的三角形为例阐述了约束一致性分析和求解的过程。
The application of Grobner basis in geometric constraint system solving is restricted by two facts: the large scale of equations and the lack of consistency detection method. Bipartite graph matching on variable level is adopted to simplify the equations; Then a consistency detection method based on Grobner basis is presented. The process of consistency detection and constraint system solving is illustrated with an inconsistent triangle construction.
出处
《工程图学学报》
CSCD
北大核心
2006年第2期13-19,共7页
Journal of Engineering Graphics
基金
国家自然科学基金资助项目(60503069)
湖北省自然科学基金资助项目(2005ABA263)
关键词
计算机应用
几何约束求解
GROBNER基
二分图最大匹配
computer application
geometric constraint system .solving
Grobner basis
bipartite graph maximum matching