期刊文献+

基于平衡峰值和梯度进化策略的多模态免疫算法 被引量:3

Multi-Modal Immune Algorithm Based on Peaks Poised and Gradient Evolution Strategies
原文传递
导出
摘要 通过考察现有的多模态优化算法。指出其存在的不足,并根据它们对峰值等高函数搜索效果较好,而对峰值不等高函数效果较差的共同特点,提出评价函数的平衡峰值策略并加以实现.基于免疫系统的抗体进化机制,集成传统的梯度进化思想,设计一种新的多模态免疫算法(MIA).给出算法主要操作算子的具体实现,并分析其运行机理、完全收敛性和计算复杂性.通过仿真实验,验证算法求解多模态问题,特别是求解具有不等高多峰函数的有效性、完全收敛性及快速收敛能力. Some available multi-modal optimization algorithms are analyzed and the faults of them are pointed out . Based on their same features that they all have fine search effect to functions with equivalenee peaks, the peaks poised strategy is proposed. Then a new Multi-modal Immune Algorithm ( MIA ) with mechanisms of antibody evolution in immune system and conventional gradient evolution is designed. The implementations of peaks poised strategy and main evolution operators are given, the algorithm's operating mechanisms, complete convergence and computation complicacy are analyzed . The simulation experiments are performed and the results testify that MIA has availability on solving multi-modal optimization problems, especially for functions with non-equivalence peaks, complete convergence and quickly convergence ability.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第2期167-172,共6页 Pattern Recognition and Artificial Intelligence
基金 山东省科技计划基金(No.J02F06 J04A12)
关键词 多模态优化 免疫算法 平衡峰值策略 完全收敛性 Multi-Modal Optimization, Immune Algorithm, Peaks Poised Strategy, Complete Convergence
  • 相关文献

参考文献7

  • 1Goldberg D E, Richardson J. Genetic Algorithms with Sharing for Multi-Modal Function Optimization, In: Proc of the 2nd International Conference on Genetic Algorithms and Their Applications. Hillsdale, USA, 1987, 41-49
  • 2William M S. Simple Subpopulation Schemes. In: Proc of the 3rd Annual Conference on Evolutionary Programming. San Diego, USA, 1994, 296-307
  • 3杨孔雨,王秀峰.一种集成免疫进化算法及其收敛性研究[J].计算机工程与应用,2003,39(31):33-35. 被引量:4
  • 4Fukuda T, Mori K, Tsukiyarna M. Parallel Search for Multi-Modal Function Optimization with Diversity and Learning of Immune Algorithm. In: Dasgupta D, ed. Artificial Immune Systems and Their Applications. Berlin, Germany: Spring-Verlag,1999, 210-220
  • 5刘洪杰.遗传算法及其在金融预测和金融决策中的应用研究.博士学位论文.南开大学信息技术科学学院,天津,2002
  • 6杨孔雨,王秀峰.免疫记忆遗传算法及其完全收敛性研究[J].计算机工程与应用,2005,41(12):47-50. 被引量:14
  • 7罗印升,李人厚,张维玺.基于免疫机理的多峰值函数并行优化算法[J].系统仿真学报,2005,17(2):319-322. 被引量:13

二级参考文献23

  • 1刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304. 被引量:23
  • 2恽为民,席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用,1996,13(4):455-460. 被引量:113
  • 3PMLydyard A Whelan M W Fanger.Instant Notes in Immunology[M].北京:科学出版社,2001.1-20.
  • 4任斌 杨晓峰 Edward J S Robyn A I and Robert V B.生物进化探秘[M].北京: 新华出版社,2002..
  • 5P M Lydyard,A Whelan,M W Fanger.Instant Notes in Immunology[M]. BIOS Scientific Published Limited,2000,(影印版),北京:科学出版社,2001:1-20.
  • 6Holland J H.Adaptive Plans Optimal for Payoff-only Environments[C]. In:Proceedings of the 24 Hawaii International Conference on System Sciences, 1969 : 917-920.
  • 7Goldberg D E,Segrest P.Finite Markov Chain Analysis of Genetic Algorithms[C].In:Proc of the second Int Conf On Genetic Algorithms, 1987 : 1-8.
  • 8A E Eiben,E H L Arts,K M Van Hee.Global convergence of genetic algorithms:A Markov chain analysis[M].in Parallel Problem Solving from Nature,H-P Schwefel and Manner,Eds.Berlin and Heidelberg: Springer, 1991:4-12.
  • 9G Rudolph.Convergence Analysis of Canonical Genetic Algorithms[J]. IEEE Trans on Neural Networks,1994;5(1):96-101.
  • 10J D Farmer,N H Packard,A S Perelson.The immune system adaptation and machine learning[J].Physical,1986;22-D.

共引文献28

同被引文献26

  • 1张毅,杨秀霞.一种基于能量熵的快速遗传算法研究[J].系统工程理论与实践,2005,25(2):123-128. 被引量:7
  • 2陈娟,徐立鸿.动态小生境遗传算法在多模函数优化中的应用[J].同济大学学报(自然科学版),2006,34(5):684-688. 被引量:7
  • 3Chelouah R, Siarry P. Genetic and Nelder-Mead Algorithms Hybridized for a More Accurate Global Optimization of Continuous Multiminima Functions. European Journal of Operational Research, 2003, 148(2) : 335 -348
  • 4Ling Qing, Wu Gang, Yang Zaiyue, et al. Crowding Clustering Genetic Algorithm for Multimodal Function Optimization. Applied Soft Computing, 2008, 8 ( 1 ) : 88 - 95
  • 5Wei Lingyun, Zhao Mei. A Niche Hybrid Genetic Algorithm for Global Optimization of Continuous Multimodal Functions. Applied Mathematics and Computation, 2005, 160(3) : 649 -661
  • 6Sareni B, Krahenbuhl L. Fitness Sharing and Niching Methods Revisited. IEEE Trans on Evolutionary Computation, 1995, 2 (3) : 97 - 106
  • 7Fukuda M T, Mari K, Tsukiyama M. Parallel Search for Multi-Modal Function Optimization with Diversity and Learning of Immune Algorithm// Dasgupta D, ed. Artificial Immune Systems and Their Applications. Berlin, Germany : Spring-Verlag, 1999 : 210 - 220
  • 8Lin C Y, Wu Wenhong. Niche Identification Techniques in Multimodal Genetic Search with Sharing Scheme. Advances in Engineering Software, 2002, 33( 11/12): 779-791
  • 9Holland J H.Adaptation in natural and artificial system:an introduction analysis with applications to biology,control,and artificial intelligence[M].USA:The University of Michigan Press,1975.
  • 10Goldberg D E,Richardson J.Genetic algorithms with sharing fo rmulti -modal function optimization[C]//Proc of the 2nd Iht Conf on Genetic Algorithms.Hillsdale,USA:[s.n.],1987:41 -49.

引证文献3

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部