期刊文献+

网格聚类中的边界处理技术 被引量:13

Border-Processing Technique in Grid-Based Clustering
原文传递
导出
摘要 提出利用限制性 k 近邻和相对密度的概念识别网格聚类边界点的技术,给出网格聚类中的边界处理算法和带边界处理的网格聚类算法(GBCB).实验表明,聚类边界处理技术精度高,能有效地将聚类的边界点和孤立点/噪声数据分离开来.基于该边界处理技术的网格聚类算法 GBCB 能识别任意形状的聚类.由于它只对数据集进行一遍扫描,算法的运行时间是输人数据大小的线性函数,可扩展性好. In order to improve accuracy of grid - based clustering , a border - processing technique is proposed , Using restricted k nearest neighbors and concept of relative density . The technique enables us to separate cluster's border points from outliers or noises accurately. Then, a grid-based clustering algorithm with border processing (GBCB) is developed. Experiment results show high accuracy of recognition of border points. Due to the only one data scan, the GBCB algorithm is very efficient with its run time being linear to the size of the input data set , and can discover arbitrary shapes of clusters and scale well.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第2期277-280,共4页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60173058)
关键词 网格聚类 边界处理 精度 Grid-Based Clustering, Border Processing, Accuracy
  • 相关文献

参考文献8

  • 1HanJW KamberM.数据挖掘概念与技术[M].机械工业出版社,2001..
  • 2Wang W, Yang J, Muntz R R. STING: A Statistical Information Grid Approach to Spatial Data Mining. In: Proc of the 23rd International Conference on Very Large Data Bases. Athens,Greece, 1997, 186-195
  • 3Sheikholeslami G, Chatterjee S, Zhang A D. WaveCluster: A Multi-Resolution Clustering Approach for Very I.arge Spatial Databases. In: Proc of the 24th International Conference on Very Large Data Bases. New York, USA, 1998, 428-439
  • 4Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In: Proc of the ACM SIGMOD International Conference on Management of Data. Seattle, USA, 1998, 94-105
  • 5Zhao Y C, Song J D. GDILC: A Grid-Based Density-lsoline Clustering Algorithm. In: Proc of the International Conference on Info-Teeh and Info-Net. Beijing, China, 2001, 140-145
  • 6Hsu C M, Chen M S. Subspace Clustering of High Dimensional Spatial Data with Noises. In: Proe of the Pacific-Asia Conference on Knowledge Discovery and Data Mining. Sydney, Australia, 2004, 31-40
  • 7Ma E W M, Chow T W S. A New Shifting Grid Clustering Algorithm. Pattern Recognition, 2004, 37(3): 503-514
  • 8Hinneburg A, Keim D A. Optional Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In: Proc of the 25th International Conference on Very Large Data Bases. Edinburgh, Scotland, 1999, 506-517

共引文献12

同被引文献60

引证文献13

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部