摘要
该文利用布尔函数的特征矩阵,给出了n(≥3)元布尔函数在s∈GFn(2)满足扩散准则的充分必要条件,在此基础上得到了布尔函数满足严格雪崩准则(SAC)的一个充分必要条件和n元平衡布尔函数满足严格雪崩准则、代数次数达到最大且不含有非零线性结构的一个充分必要条件,最后提出了平衡且满足严格雪崩准则的布尔函数的两种特殊的“递补”构造法。
With characteristic matrix of Boolean function, a necessary and sufficient condition is given on a Boolean function satisfying the propagation criterion on vectors S∈GF^n(2), which provides n ≥ 3. On the basis of it, the necessary and sutTicient conditions are given on a Boolean function satisfying Strict Avalanche Criterion (SAC) and on a balanced SAC function which achieves the maximum degree and no nonzero linear structure. Finally, two special "filling vacancies in the proper order "methods of construction are presented.
出处
《电子与信息学报》
EI
CSCD
北大核心
2006年第4期712-716,共5页
Journal of Electronics & Information Technology
关键词
特征矩阵
扩散准则
严格雪崩准则(SAC)
非零线性结构
相关免疫
Characteristic matrix, Propagation criterion, Strict Avalanche Criterion(SAC), Nonzero linear structure,Correlation immune