期刊文献+

次酉极因子在酉不变范数下的相对扰动界 被引量:1

Relative Perturbation Bounds for the Subunitary Polar Factor Under Unitarily Invariant Norms
下载PDF
导出
摘要 设A是一个m×n阶复矩阵,分解A=QH称为广义极分解,如果Q是m×n次酉极因子且H为n×n半正定的Hermite矩阵.本文获得了次酉极因子在任意酉不变范数下的几个相对扰动界,在某种意义上,相对扰动界比R.C.Li等获得的绝对扰动界要好. Let A be an m x n complex matrix, A decomposition A = QH is said to be a generalized polar decomposition of A if Q is an m ×n subunitary matrix and H is an n ×n Hermitian positive semidefinite matrix. In this paper, some relative perturbation bounds of the subunitary polar factor under unitarily invariant norms are presented, which are tighter in some sense, compared with the absolute perturbation bounds obtained by Li C. R. and so on.
作者 陈小山 黎稳
出处 《数学进展》 CSCD 北大核心 2006年第2期178-184,共7页 Advances in Mathematics(China)
基金 基金项目:广东省自然科学基金(No.31496)广东省高校自然科学基金(No.0119)广东省"千百十"人才基金(No.Q02084)。
关键词 广义极分解 次酉极因子 相对扰动界 酉不变范数 generalized polar decomposition subunitary polar factor relative perturbation bound unitary invariant norm
  • 相关文献

参考文献12

  • 1Daves,C.,Kahan,W.M.,The rotation of eigenvectors by a perturbation (Ⅲ),SIAM J Numer Anal.,1970,1:1-46.
  • 2Eisenstat,C.,Ipsen,I.C.F.,Three absolute perturbation bounds for matrix eigenvalues imply relative bounds,SIAM J.Matrix Anal.Appl.,1998,20:149-158.
  • 3Chen Chunhui,Sun Jiguang,Perturbation bounds for the polar factors,J.Comp.Math.,1989,7:397-401.
  • 4Li Ren-cang,New perturbation bounds for the unitary polar factor,SIAM J.Matrix Anal.Appl.,1995,16:327-332.
  • 5Li Ren-cang,A perturbation bound for the generalized polar decomposition,BIT Numerical Math.,1993,33:304-308.
  • 6Li Ren-cang,Relative perturbation bounds for the unitary polar factor,BIT Numerical Math.,1997,37:67-75.
  • 7Barrlund,A.,Perturbation bounds on the polar decomposition,BIT Numerical Math.,1990,31:101-113.
  • 8Mathias,R.,Perturbation bounds for the polar decomposition,SIAM J.Matrix Anal.Appl.,1993,14:588-597.
  • 9孙继广,陈春晖.广义极分解[J].计算数学,1989,11(3):262-273. 被引量:28
  • 10Chen Xiao-shan,Li Wen,Sun Wei-wei,Some new perturbation bounds for the genralized polar decomposition,Bit,2004,44:237-244.

二级参考文献3

  • 1Mao Jianqin,J Comput Math,1986年,4卷,3期,245页
  • 2孙继广,计算数学,1984年,6卷,3期,334页
  • 3陈春晖,J Comput Math

共引文献27

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部