期刊文献+

d+1维生长方程的奇异动力学标度性质研究 被引量:4

ANOMALOUS DYNAMIC SCALING OF THE (d+1)-DIMENSIONAL GROWTH EQUATIONS
下载PDF
导出
摘要 将López基于Hentschel和Family的直接标度分析理论提出的判别连续性动力学生长方程标度奇异性的解析方法,本文推广应用到d+1维生长方程动力学标度奇异性质的研究中,分别判断出d+1维的Kardar-Parisi-Zhang(KPZ)、线性molecular-beam epitaxy(MBE)、Sun-Guo-Grant(SGG)以及Lai-Das Sarma-Villain(LDV)等生长方程在弱耦合和强耦合区域内的奇异标度性质.当生长方程出现奇异标度性质时,使用标度关系lαoc=α-zκ可以得到各方程的局域粗糙度指数,并与数值模拟的结果相吻合. Based on the scaling analysis introduced by Hentschel and Family, Lopez proposed an analytical approach to determine anomalous dynamic scaling of the continuum growth equations. In this work, the approach is generalized to the (d+ 1)-dimensional growth equations to determine their dynamic scaling. The growth equations studied here include (d+ 1)-dimensional Kardar-Parisi-Zhang(KPZ), linear molecular beam epitaxy (MBE), Sun-Guo-Grant (SGG) and Lai-Das Sarma-Villain (LDV) equation. Their anomalous scaling properties are obtained in both the weak- and strong-coupling regions respectively. When these growth equations exhibit anomalous dynamic scaling, the local roughness exponents are obtained by using scaling relation αloc=α-zk, which are well consistent with the corresponding numerical results.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期161-165,共5页 Journal of Beijing Normal University(Natural Science)
基金 教育部留学回国人员科研启动基金资助项目
关键词 生长方程 标度分析 奇异动力学标度 growth equation scaling analysis anomalous dynamic scaling
  • 相关文献

参考文献24

  • 1Halpin Healy T,Zhang Y C.Kinetic roughening phenomena,stochastic growth,directed polymers and all that[J].Phys Rep,1995,254:215.
  • 2Meakin P.Fractal,scaling and growth far from equilibrium[M].Cambridge:Cambridge University Press,1998:401.
  • 3Krug J.Origins of scale invariance in growth process[J].Adv Phys,1997,46(2):139.
  • 4Family F,Vicsek T.Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model[J].J Phys A,1985,18:L75.
  • 5Krug J.Turbulent interfaces[J].Phys Rev Lett,1994,72 (18):2907.
  • 6Das Sarma S,Lanczycki C J,Kotlyar R,et al.Scale invariance and dynamical correlations in growth models of molecular beam epitaxy[J].Phys Rev,1996,E53 (1):359.
  • 7López J M,Rodriguez M A.Lack of self-affinity and anomalous roughening in growth processes[J].Phys Rev,1996,E54(3):R2189.
  • 8López J M,Rodriguez M A,Cuerno R.Super roughening versus intrinsic anomalous scaling of surfaces[J].Phys Rev,1997,E56(4):3993.
  • 9Amar G,Lam P M,Family F.Groove instabilities in surface growth with diffusion[J].Phys Rev,1993,E47(5):3242.
  • 10López J M.Scaling approach to calculate critical exponents in anomalous surface roughening[J].Phys Rev Lett,1999,83(22):4594.

同被引文献134

  • 1Meakin P 1998 Fractal, Scaling and Growth far from Equilibrium ( Cambridge : Cambridge University Press)
  • 2Barabasi A L, Stanley 1995 Fractal Concepts in Surface Growth ( Cambridge : Cambridge University Press)
  • 3Halpin H T, Zhang Y C 1995 Phys. Rep. 254 215
  • 4Krug J 1997 Adv. Phys. 46 139
  • 5Family F, Vicsek T 1991 Dynamics of Fractal Surfaces ( Singapore : World Scientific Press)
  • 6Family F, Viesek T 1985 J. Phys. A 18 L75
  • 7Das Sarma S, Lanczycki C J, Kotlyar R et al 1996 Phys. Rev. E 53 359
  • 8Bru A, Pastor J M, Femaud Iet al 1998 Phys. Rev. Lett. 81 4008
  • 9Santamaria J, Gomez M E, Vicent J L et al 2002 Phys. Rev. Lett. 89 190601
  • 10Huo S, Schwarzacher W 2001 Phys. Rev. Lett. 86 256

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部