期刊文献+

基于粗糙集属性约简算法和支持向量机的短期负荷预测 被引量:30

Short-Term Load Forecasting Based on Attribute Reduction Algorithm of Rough Sets and Support Vector Machine
下载PDF
导出
摘要 结合粗糙集和支持向量机两种智能算法提出了短期负荷预测模型。首先根据历史数据建立属性决策表,通过属性约简算法对数据进行挖掘,找到影响负荷的核心因素,然后将它们作为支持向量机的输入矢量来预测负荷。算例结果表明,新模型与按经验选取输入矢量的传统支持向量机模型相比,预测精度有了很大的提高且更适用于短期负荷预测。 A short-term load forecasting model based on two integrated intelligent algorithms, i.e., attribute reduction algorithm of rough sets and support vector machines (SVM), is proposed. At first, according to historical data a attribute decision table is built up and the data mining is performed by means of attribute reduction algorithm, thus the kernel factors influencing loads is determined and using them as the input vectors of SVM the load forecasting is conducted. Forecasting results of calculation examples show that comparing with traditional SVM model that chooses input vectors in the light of experience the forecasting accuracy is evidently improved and is more suitable to short-term load forecasting.
出处 《电网技术》 EI CSCD 北大核心 2006年第8期56-59,70,共5页 Power System Technology
关键词 粗糙集 支持向量机 短期负荷预测 属性约简算法 rough sets support vector machines: short-term load forecasting attribute reduction algorithm
  • 相关文献

参考文献16

二级参考文献63

  • 1钟波,周家启,肖智.基于粗糙集与神经网络的电力负荷新型预测模型[J].系统工程理论与实践,2004,24(6):113-119. 被引量:19
  • 2张乃尧 阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1994..
  • 3魏海坤 徐嗣鑫 宋文忠 等(Wei Haikun Xu Sixin Song Wenzhong etal).最小RBF网设计的进化优选算法及其在动力配煤过程状态预测建模中的应用[J]..
  • 4[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995.
  • 5[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423,
  • 6[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221.
  • 7[4]A.M. Lanchlan , An improved novelty criterion for resource allocating networks[C] , IEE ,Artifical Neural Networks , Conference Publication , 1997:440:48-52
  • 8[5]D.Srinivasan, S.S.Tan , C.S.Chang and E.K.Chan ,Practical im-plentation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J], IEE Proc.-Gener. Transm,1998.11(6):687-692.
  • 9[6]V.N. Vapnik ,The nature of statistical learning theory[M], New York: Springer, 1999.
  • 10[7]A. Smola and B. Scholkopf , A tutorial on support vector regression[M], NeuroCOLT Tech. Rep. TR 1998-030, Royal Holloway College , London , U.K., 1998.

共引文献649

同被引文献315

引证文献30

二级引证文献371

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部