摘要
记δ和α分别为图G=(V,E)的最小度和独立数,1991年Faudree等人和尹家洪分别得到:“若2连通n阶图G的不相邻的任意两点x、y均有|N(x)∪N(y)|≥n-δ,则G是哈密尔顿图”和“若2连通n阶图G的长为2的任意两点x、y均有|N(x)∪N(y)|≥n-δ,则G是哈密尔顿图”。这里得到结果:若2连通n阶图G的满足1≤|N(x)∩N(y)|≤α-1的不相邻的任两点x、y均有|N(x)∪N(y)|≥n-δ,则G是哈密尔顿图。此结果推广Faudree等人和尹家洪的结果。
Let G be a simple graph, δ and α be minimum degree and independent degree of G, respectively. In 1991 Faudree et al considered neighborhood union condition |N(x)∪N(y)|≥n-δ for each pair of non-adjacent vertices x,y for Hamiltonian. Yin Jiahong considered further condition |N(x)∪N(y)|≥n-δ for each pair of nonadjacent vertices x,y with d(x,y)=2 for Hamiltonian. The new sufficient condition of generalization of the above two conditions for a graph to be Hamihonian graph is considered and show that if G is a 2-connected graph of order n, if |N(x)∪N(y)|≥n-δ for each pair of non-adjacent vertices x,y with 1 |N(x)∩N(y)|≤α-1, then G is Hamiltonian.
出处
《科学技术与工程》
2006年第8期1045-1046,1051,共3页
Science Technology and Engineering
基金
海南省自然科学基金(10501)资助
关键词
哈密尔顿图
邻域并条件
新的条件
Hamiltonian neighborhood union conditions new sufficient conditions