摘要
The South Asian High (SAH) and precipitation over East Asia simulated by 11 coupled GCMs associated with the forthcoming Intergovernmental Panel on Climate Change's (IPCC) 4th Assessment Report are evaluated. The seasonal behavior of the SAH is presented for each model. Analyses of the results show that all models are able to reproduce the seasonal cycle of the SAH. Locations of the SAH center are also basically reproduced by these models. All models underestimate the intensity and the extension of coverage in summer. The anomalous SAH can be divided into east and west modes according to its longitudinal position in summer on the interannual timescale, and the composite anomalies of the observed precipitation for these two modes tend to have opposite signs over East Asia. However, only several coupled GCMs can simulate the relationship between rainfall and SAH similar to the observed one, which may be associated with the bias in simulation of the subtropical anticyclone over the West Pacific (SAWP) at 500 hPa. In fact, it is found that any coupled GCM, that can reproduce the reasonable summer mean state of SAWP and the southward (northward) withdrawal (extension) for the east (west) mode of SAH as compared to the observed, will also simulate similar rainfall anomaly patterns for the east and west SAH modes over East Asia. Further analysis indicates that the observed variations in the SAH, SAWP and rainfall are closely related to the sea surface temperature (SST) over the equatorial tropical Pacific. Particularly, some models cannot simulate the SAWP extending northward in the west mode and withdrawing southward in the east mode, which may be related to weak major E1 Nifio or La Nifia events. The abilities of the coupled GCMs to simulate the SAWP and ENSO events are associated partly with their ability to reproduce the observed relationship between SAH and the rainfall anomaly over East Asia.
The South Asian High (SAH) and precipitation over East Asia simulated by 11 coupled GCMs associated with the forthcoming Intergovernmental Panel on Climate Change's (IPCC) 4th Assessment Report are evaluated. The seasonal behavior of the SAH is presented for each model. Analyses of the results show that all models are able to reproduce the seasonal cycle of the SAH. Locations of the SAH center are also basically reproduced by these models. All models underestimate the intensity and the extension of coverage in summer. The anomalous SAH can be divided into east and west modes according to its longitudinal position in summer on the interannual timescale, and the composite anomalies of the observed precipitation for these two modes tend to have opposite signs over East Asia. However, only several coupled GCMs can simulate the relationship between rainfall and SAH similar to the observed one, which may be associated with the bias in simulation of the subtropical anticyclone over the West Pacific (SAWP) at 500 hPa. In fact, it is found that any coupled GCM, that can reproduce the reasonable summer mean state of SAWP and the southward (northward) withdrawal (extension) for the east (west) mode of SAH as compared to the observed, will also simulate similar rainfall anomaly patterns for the east and west SAH modes over East Asia. Further analysis indicates that the observed variations in the SAH, SAWP and rainfall are closely related to the sea surface temperature (SST) over the equatorial tropical Pacific. Particularly, some models cannot simulate the SAWP extending northward in the west mode and withdrawing southward in the east mode, which may be related to weak major E1 Nifio or La Nifia events. The abilities of the coupled GCMs to simulate the SAWP and ENSO events are associated partly with their ability to reproduce the observed relationship between SAH and the rainfall anomaly over East Asia.