期刊文献+

方柱转动情况下二维声子晶体的声波带隙结构 被引量:1

Acoustic band gaps of two-dimensional phononic crystal with rotating square rods
下载PDF
导出
摘要 用平面波展开法研究方形钨柱在环氧树脂基体中呈正方形排列和三角形排列时的带隙以及方柱转动对带隙结构的影响。研究结果表明:在相同的填充率下,钨柱按三角形排列比按正方形排列更容易具有较宽的完全带隙;在任意的填充率下,当钨柱按正方形排列时,系统的最低完全带隙相对宽度随着转动角度的增加而变窄;当按三角形排列时,系统的最低完全带隙相对宽度随着转动角度的增加先变宽,后变窄;插入体的填充率越高,方柱转动对系统带隙的影响越大。 By the plane-wave expansion method, the acoustic elastic band structures of twodimensional phononic crystal composed of square or triangle array of tungsten square rods embed ded in epoxy, and the influence of rods rotating on the acoustic band structures were studied. The results show that the lowest complete band gaps in the triangle array are wider than those in the square array at the same filling fraction. For the square array, the normalized gap width of the lowest complete band gap decreases monotonously with the increase of rotation angle at certain filling fraction, and for the triangle array, it enlarges at a lower angle and then narrows at a higher angle with the increase of rotation angle. The higher the filling fraction, the stronger the influence of rod rotating on band gap.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第2期269-273,共5页 Journal of Central South University:Science and Technology
基金 湖南省自然科学基金资助项目(04JJ3079)
关键词 声子晶体 声波带隙 平面波展开法 phononic crystal acoustic band gap plane-wave expansion method
  • 相关文献

参考文献13

  • 1Vasseur J O,Ddymier P A,Chenni B,et al.Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals[J].Phys Rev Lett,2001,86(14):3012-3015.
  • 2Tanaka Y,Tomoyasu Y,Tamura S.Band structure of acoustic waves in phononic lattice:Two-dimensional composites with large acoustic mismatch[J].Phys Rev B,2000,62(11):7387-7392.
  • 3LAI Yun,ZHANG Zhao-qing.Large band gaps in elastic phononic crystal with air inclusions[J].Appl Phys Lett,2003,83(19):3900-3902.
  • 4Goffaux C,Sanchez-dehesa J.Two-dimensional phononic crystals studied using a variational method:Application to lattice of locally resonant materials[J].Phys Rev B,2003,67(14):144301-1-144301-10.
  • 5Kushwaha M S,Halevi P.Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders[J].Appl Phys Lett,1996,69(1):31-33.
  • 6Kushwaha M S,Halevi P.Band-gap engineering in periodic elastic composites[J].Appl Phys Lett,1994,64(9):1085-1087.
  • 7WU Fu-gen,LIU Zheng-you,LIU You-yan.Acoustic band gaps created by rotating square rods in a two-dimensional lattice[J].Phys Rev E,2002,66(4):046628-1-046628-5.
  • 8WU Fu-gen,LIU Zheng-you,LIU You-yan.Acoustic band gaps in 2D liquid phononic crystals of rectangular structure[J].J Phys D:Appl Phys,2002,35(2):162-165.
  • 9LAI Yun,ZHANG Xiang-dong,ZHANG Zhao-qing.Engineering acoustic band gaps[J].Appl Phys Lett,2001,79(20):3224-3226.
  • 10LI Xiao-chun,LIU Zheng-you.Coupling of cavity modes and guiding modes in two-dimensional phononic crystals[J].Solid State Commun,2005,133:397-402.

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部