期刊文献+

基于小波变换的鼓泡塔内气液两相湍流多尺度结构分析 被引量:2

Wavelet analysis of turbulent structure at superficial velocity in bubble column
下载PDF
导出
摘要 在476mm的鼓泡塔内,以0.1~1m·s-1的高气速,利用Pavlov管测量塔内不同位置液相轴向速度,通过能谱分析发现,在空间区域上采用该方法测得的速度时间序列可分为含能尺度区和惯性子区,再借助7尺度Daubechie2小波分析的方法实现湍流量化指标如局部间歇性测度、间歇指数、尺度能量、涡旋尺寸等的评估.实验结果表明,高频和低频尺度下LIM峰分布表明湍流相干结构和大涡旋与小涡旋串级结构的存在.各小波尺度能量的比较说明,气速增大,高频和低频尺度的能量均增大,其中,含能尺度区间的能量占总能量的97%以上.不同尺度涡旋尺寸的计算证实了接近于塔内径最大涡旋的存在.进一步分析表明,塔壁处的涡旋尺寸约为塔中心处的2倍,含能尺度区间的涡旋尺寸为0.03~0.35m,气速对涡旋尺寸的影响可以忽略.湍流量化指标的分析有助于揭示湍流中的隐含结构以及高气速下鼓泡塔内湍流流动规律. Liquid axial velocity was measured with Pavlov tube at a high superficial velocity (0. 1--1 m·s^-1) in a bubble column of 0. 476 m inner diameter. Power spectrum showed that velocity-time signal measured with Pavlov tube could be divided into energy range and inertial sub-range. Wavelet transform analysis was used for evaluating quantifiers of turbulence, such as local intermittency measure, intermittency index and flatness factor. The profile of fine scale and large sale LIM distribution showed the existence of coherent structure. Power distribution for various wavelet scales showed that fine scale and large scale power became larger with increasing gas velocity. The energy range contained over 97% of the total power, and the average eddy size in that region was between 0.03 m and 0.35 m. These quantifiers of turbulence were used for detecting the hidden structures and patterns in the velocity-time series, furthermore for understanding the rule of turbulence in the bubble column at high superficial velocity.
机构地区 浙江大学化工系
出处 《化工学报》 EI CAS CSCD 北大核心 2006年第4期738-743,共6页 CIESC Journal
关键词 小波分析 鼓泡塔 高气速 湍流 能量分布 涡旋尺寸 wavelet transform analysis bubble column high superficial velocity turbulent structure power distribution eddy size
  • 相关文献

二级参考文献18

  • 1[1]Dragmir B Bukur, James G Daly,Snehal A Patel. Application of γ-Ray Attenuation for Measurement of Gas Holdups and Flow Regime Transition in Bubble Columns.Ind.Eng.Chem.Res., 1996,35:70-80
  • 2[2]Zhang Tongwang(张同旺),Jin Haibo(勒海波),He Guangxiang(何广湘),Yang Suohe(杨索和),Tong Zemin(佟泽民).The Measurement in Bubble Column with DGD Method.Journal of Chemical Industry and Engineering (China) (化工学报),2000,55(3):476-480.
  • 3[3]Men Zhuowu (门卓武),Que Guohe(阙国和),Arsam B,Morsi B I.Effect of Operating Variables on Hydrodynamics in Large Scale Slurry Bubble Column Reactor.Journal of Chemical Industry and Engineering (China) (化工学报),2002,53(1):4-10
  • 4[4]Calderbank P H, Evans F,Rennie J. The Mass-Transfer Efficiency of Distillation and Gas Absorption Plate columns.Inst.Chem.Eng.London, 1961(125):51-58
  • 5[5]Shollenberger K A, Torczynski J R, Adkins D R,O'Hem T J,Jackson N B.Gamma-sensitometry Tomography of Gas Holdup Spatial Distribution in Industrial Scale Bubble Columns.Chem.Eng.Sci., 1997,52(3):2037-2048
  • 6[6]Veera V Parasn,Joshi J B. Measurement of Gas Holdup Profiles in Bubble Column by Gamma Ray Tomography: Effect of Liquid Phase Properties.Trans.I.Chem.Eng.,Part A, 2000,78,(4):425-434
  • 7[7]Veera V Parasn,Joshi J B. Measurement of Gas Holdup Profiles in Bubble Column by Gamma Ray Tomography: Effect of Sparger Design and Height of Dispersion in Bubble Column. Trans.I.Chem.Eng.,Part A,1999,77(7):303-317
  • 8[8]Bukur D B,Daly J G. Gas Holdup in a Bubble Column for Fischer-Tropsch Synthesis. Chem.Eng.Sci., 1987,42:2967-2969
  • 9[9]Patel S A, Daly J G,Bukur D B. Bubble Size Distribution in Fischer- Tropsch Derived Wases in a Bubble Column.AIChE J., 1990,36:93-105
  • 10朱慧娴,周敏林,侯金花,徐峰,乐伟波,梁丹丹,梁少姗,邵思佳,刘晔,曾彩虹,刘志红.肾脏疾病谱的变迁:基于2003~2014年中国单中心40759例肾活检病理诊断分析[J].肾脏病与透析肾移植杂志,2017,26(2):101-107. 被引量:89

共引文献10

同被引文献35

  • 1卢瑞华,王亦飞,苏宜丰,吴宏涛,李伟,于遵宏.复合鼓泡床洗涤冷却室中液滴夹带统计模型[J].化学反应工程与工艺,2006,22(1):37-42. 被引量:14
  • 2罗潇,刘平乐,罗和安.气液鼓泡床内的液体流速分布[J].化工学报,2006,57(7):1565-1569. 被引量:7
  • 3谢海燕,袁竹林.激冷室内合成气穿越液池过程流动特性与带水问题[J].中国电机工程学报,2007,27(8):37-41. 被引量:20
  • 4Joshi J B. Computational flow modeling and design of bubble column reactors. Chemical Engineering Science, 2001, 56:5893-5933.
  • 5Wang Tiefeng, Wang Jinfu, Jin Yong. Slurry reactors for gas to liquid process: a review. Industrial Engineering Research, 2007, 46:5824 -5847.
  • 6Andre Steynberg, Mark Dry. Fischer-Tropsch Technology. Steynberg A P, Dry B H, Breman B B. Oxford: Elsevier, 2004:110-145.
  • 7Kulkarni A A, Ekambara K, Joshi J B. On the development of flow pattern in a bubble column reactor experiments and CFD. Chemical Engineering Science, 2007, 62:1049-1072.
  • 8Kulkarni A A, Jyeshtharaj B, Joshi J B. Measurement of eddy diffusivity in bubble column and validation based on the intermittency models. Chemical Engineering Science, 2005, 60:6146-6159.
  • 9Kulkarni A A, Jyeshtharaj B, Joshi J B. Application of muhiresolution analysis for simultaneous measurement of gas and liquid velocities and fractional gas hold up in bubble column using LDA. Chemical Engineering Science, 2001, 56, 5037-5048.
  • 10Hills J H. Radial non-uniformity of velocity and voidage in a bubble column. Transactions of the Institution of Chemical Engineering Journal, 1974, 8:191-197.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部