期刊文献+

支持向量机(SVM)方法在降水分类预测中的应用 被引量:20

APPLICATION OF SUPPORT VECTOR MACHINE (SVM) IN RAINFALL CATEGORICAL FORECAST
下载PDF
导出
摘要 支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次。主要利用1958—2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建立了四川盆地5片区降水距平百分率大于50%(特多)和小于-50%(特少)的2个SVM推理模型,并进行了降水分类预测试验和2005年1-3月实际预测,结果显示出所建SVM推理模型的Ts评分较高,具有一定的预测能力,展示了SVM的优越性和推广前景,可在短期气候预测业务中参考应用。 Two support vector machine (SVM) reasoning models were established for five areas with abnormal rainfall forecast of 50% excess or less than - 50% in Sichuan Basin, using the monthly data of 74 circumiluent eigen values, sea surface temperature, index of Nino 3 and Nino 4, index of sea level pressure of 500 HPA and 100 HPA height from 1958 to 2003. Rainfall categorical forecast was performed with these two models from January to March in 2005. The results indicated that both models performed satisfactorily, with relatively high threat scores its). Empirical results demonstrated that their performance was better than that given by standard statistic analysis and forecast methods.
出处 《西南农业大学学报(自然科学版)》 CSCD 北大核心 2006年第2期252-257,共6页 Journal of Southwest Agricultural University
基金 国家自然科学基金资助项目(60072006) 四川省重点科技资助项目(05jy029-086)
关键词 支持向量机(SVM) 推理模型 降水 分类预测 SVM reasoning model rainfall categorical forecast
  • 相关文献

参考文献8

二级参考文献23

  • 1黄嘉佑,谢庄.卡尔曼滤波在天气预报中的应用[J].气象,1993,19(4):3-7. 被引量:32
  • 2Vapnik V N.Statistical Learning Theory.John Wiley & Sons,Inc.,New York,1998.
  • 3Vapnik V N.The Nature of Statistical Learning Theory.Springer Verlag,New York,2000.(有中译本:张学工译.统计学习理论的本质.北京:清华大学出版社,2000.)
  • 4Cristianini N and Shawa-Taylor J.An Introduction of Support Vector Machines and Other Kernel_based Learning Methods.Cambridge University Press,2000.
  • 5Burges C J.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998,2: 127~167.
  • 6Courant R and Hilbert D,Method of Mathematical Physics,Volume I.Springer Verlag,1953.
  • 7http://www.kernel-machines.org/
  • 8Scholkopf B,Burges Ch-J C and Smola A J,edited.Advances in Kernel Methods-Support Vector Learning.MIT Press,Cambridge,1999.
  • 9叶笃正,曾庆存,郭裕福.当代气候研究.北京:气象出版社,1991.164-177.
  • 10陆如华 徐传玉 张玲.卡尔曼滤波在天气预报中的运用技术[J].数值预报产品释用公报,1996,5:28-36.

共引文献249

同被引文献227

引证文献20

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部