摘要
设H是一个复Hilbert空间,S(H)为H上对称算子全体所成的集合,用Γ表示S(H)中秩1算子全体所成的集合.设L是S(H)上的映射,如果L(Γ)Γ,则称L是保秩1的.S(H)上保秩1的弱连续线性映射被刻画.
Let H be a complex Hilbert space, and let S(H) be the space of all symmetric operators on H. Denote by Г the subset of S(H) consisting of all rank one operators. A linear map L from S(H) to itself is called a rank one preserver on S(H) if L(Г) lohtain in F. A complete classification of all linear and weakly continuous rank one preservers on S(H) is given.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2006年第2期235-238,共4页
Journal of Natural Science of Heilongjiang University
基金
SupportedbytheNatureScienceFoundationofHeilongjiangEducationCommittee(10541176)