摘要
提出了基于粗糙集理论对逻辑函数进行知识表达的方法,给出了运用粗糙集进行组合逻辑化简的优化算法.为保证化简前后逻辑上的等价性,用化简前的逻辑矩阵中的on-set项是否被化简后的off-set项的补完全覆盖的方法进行检验,结果表明化简前后是等价的.算法通过了对20变量以下的组合逻辑函数标准的Benchmark例题和部分组合逻辑函数典型实例验证,保证了优化结果正确性和有效性.
A method of knowledge expression on based rough set theory for logic function is proposed. A 'minimization algorithm of simplifying logic function by using rough set is given. The logical equivalence of simplifying was validated by whether the on - set terms in logical matrix in before is completely covered by complemented set of the off - set terms in after. It is shown that they are equivalence. The algorithm is a doable - effective method by some examples and Standard Benchmark's sample proved.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2006年第2期265-268,共4页
Journal of Natural Science of Heilongjiang University
基金
江苏省自然科学基金资助项目(BK2001130)
南通大学自然科学基金资助项目(05Z005)
关键词
逻辑函数
粗糙集
最小化
logic function
rough set
minimization