期刊文献+

基于遗传算法的因果图网络结构学习 被引量:1

Learning Causality Diagram Structure Based on Genetic Algorithm
下载PDF
导出
摘要 在因果图理论中,采用了图形化和直接因果强度来表达知识和因果关系,它克服了贝叶斯网的一些不足,已发展成了一个能够处理离散变量和连续变量的混合模型.但是因果图的结构得由领域专家给出,这在实际中很难办到.鉴于因果图结构的复杂度随论域中节点个数的增加呈指数上升,寻找最有可能因果图网络结构成为了NP-HARD难题.文中给出了如何利用已知数据集,寻找最有可能的因果图网络结构设计的遗传算法(Genetic A lgorithm,GA). The Causality Diagram theory, which adopted graphical expression of knowledge and direct causality intensity of causality, overcomes some shortages in Belief Network and has evolved into a mixed causality diagram methodology coped with discrete and continuous variable. But it is difficult that the structure of Causality Diagram given by expert. Because the complexity of causality diagram structure goes up exponentially through the number of the vertex' s increasing, it is NP-hard problem to find the most possible structure from a set of data. The authors discuss approaches and present Genetic Algorithm, to find the most possible structure from a set of data. Experiment shows the method is effective.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第4期111-114,共4页 Journal of Chongqing University
基金 重庆市科技攻关资助项目(5990)
关键词 因果图 因果图网络结构 机器学习 遗传算法 causality diagram causality diagram structure machine learning genetic algorithm
  • 相关文献

参考文献7

  • 1ZHANG QIN.Probabilistic Reasoning Based on Dynamic Causality Trees/diagrams[J].Reliability Engineering and System Safety,1994,46:209-220.
  • 2汪成亮,沈文武,程克非,张勤.连续变量/离散变量混合因果图推理模型研究[J].信息与控制,2004,33(3):285-288. 被引量:25
  • 3HECKERMAN D.A Tutorial on Learning with Bayesian Network[R].Microsoft Research Technical Report,MSRTR-95-06,Redmond,WA,March 1995.
  • 4WARY B A.Guide to the Literature on Learning Probabilistic Networks from Data[J].IEEE Trans on Knowledge and Data Engineering,1996,8 (2):195-210.
  • 5石庆喜,王洪春,张勤.因果图网络结构学习算法研究[J].微电子学与计算机,2006,23(1):77-79. 被引量:2
  • 6玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 7SHI QINGXI,WANG HONGCHUN,ZHANG QIN.Intelligent Fault Diagnosis Technique Based on Causality Diagram[A].Proceedings of the World Congress on Intelligent Control and Automation[C].杭州:浙江大学出版社,2004.

二级参考文献11

  • 1Zhang Q. Probabilistic reasoning based on dynamic causality tree/diagrams [ J]. Reliability Engineering and System Safety, 1994,46(3) :209 -220.
  • 2Zhang Q, An X, Gu J, et al. Application of FBOLES -a prototype expert system for fault diagnosis in nuclear power plants [ J ]. Reliability Engineering and System Safety, 1994, 44(3) :225 -235.
  • 3张勤 刘启元 樊兴华.面向工业应用的智能开发平台及系统研究[R].重庆市科学技术项目验收报告,2001..
  • 4Heckerman D. et al. A Bayesian Approach to Causal Discovery[R], Technical Report, MSR-TR-97-05, 1991.
  • 5Heckerman D. Bayesian Networks for Data Mining[J]. Data Mining and Knowledge Discoveryl, 1997:79-119.
  • 6Qin Zhang, Probabilistic Reasoning Based on Dynamic Causality Trees/diagrams, Reliability Engineering and System Safety, 1994, 46:209-220.
  • 7Heckerman D. A tutorial on I-arning With Bayesian Networks. Microsoft Research Technical Report, MSR-TR-95-06, Redmond, WA, March 1995.
  • 8Dempster A, Laird N, Rubin D. Maximum Likelihood From Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 1977, 39:1-38.
  • 9李膺春,石纯一.知识概念的模糊模型及模糊目标的识别[J].计算机学报,1999,22(6):615-619. 被引量:8
  • 10邢永康,沈一栋.信度网中条件概率表的学习[J].计算机科学,2000,27(10):88-92. 被引量:7

共引文献317

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部