期刊文献+

基于特征点统计模型的联机签名校验 被引量:1

Online signature verification based on statistical modeling of characteristic points
原文传递
导出
摘要 在联机签名校验中,动态时间规正(DTW)方法是一种常用的校验算法,在非线性时间对齐的基础上给出两个签名间的距离并进行判决,这样做经验的成份较多,缺乏统计基础。该文提出了签名的特征点统计模型,利用DTW算法在序列匹配的基础上从签名中提取到多个特征点,将每个特征点的变化情况描述为多维统计特征的概率分布,在所有特征点具有同样协方差分布的假定下得到具体的概率分布参数。按照此模型推导出了在最小风险准则下对签名进行真伪判决的判决准则。采用此方法对一个公共的签名样本库进行了真伪校验测试,得到了4.41%的等误率。 Dynamic time warping (DTW) is a commonly used method for online signature verification. Dynamic time warping makes a decision based on nonlinear aligning of the two signatures which produces a DTW distance, but the method is subjective and lacks a statistical basis. This paper presents a method to model a signature's characteristic points. The DTW method is then utilized to match the two signature sequences so that the characteristic points can be extracted from the matching result. Changes in a characteristic point are described by a multi-variable statistical probability distribution. The probability distribution parameters are calculated assuming that all characteristic points in a signature have the same distribution. A statistical discriminant function is used to judge whether a signature is genuine or forged based on the minimum potential risk. The proposed method was tested with a general signature database with an error rate of 4.41%.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第4期495-499,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60472002)
关键词 后验概率估计 联机签名校验 动态时间规正(UTW) posterior probability estimation online signature verification dynamic time warping
  • 相关文献

参考文献10

  • 1Parizeau M,Plamondon R.A comparative analysis of regional correlation,dynamic time warping and skeletal tree matching for signature[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):710-717.
  • 2Gupta G,McCabe A.A review of dynamic handwritten signature verification[EB/OL].http://citeseer.nj.nec.com/gupta97review.html,1997.
  • 3Martens R,Claesen L.Online signature verification by dynamic time-warping[A].IEEE Computer Society.Proceedings of ICPR'96[C].Vienna (AUSTRIA):IEEE Computer Society Press,1996.38-42.
  • 4金涌,柳健.基于空间曲线弹性匹配的在线手写签名鉴别[J].华中理工大学学报,1999,27(5):14-16. 被引量:5
  • 5Munich M E,Perona P.Continuous dynamic time warping for translation-invariant curve alignment with applications to signature verification[A].Proceedings of the IEEE International Conference on Computer Vision[C].Corfu,Greece:IEEE Press,1999,1:108-115.
  • 6Feng H,Wah C C.Online signature verification using a new extreme points warping technique[J].Pattern Recognition Letters,2003,24(16):2943-2951.
  • 7Kiran G,Srinivasa R,Samuel S.Online signature verification system using probablistic feature modelling[A].International Symposium on Signal Processing and Its Applications (ISSPA)[C].Kuala Lumpur,Malaysia:IEEE Press,2001.355-358.
  • 8Lee L L,Berger T,Aviczer E.Reliable online human signature verification systems[J].IEEE Transactions On Pattern Analysis and Machine Intelligence,1996,18(6):643-647.
  • 9赵永健,李永勃.基于小波变换的汉字签名鉴别[J].计算机工程,2003,29(2):243-245. 被引量:3
  • 10Yeung D T,Chang H,Xiong Y,et al.SVC2004:First international signature verificaiton competition[A].Zhang D,Jain A K.Proceedings of the International Conference on Biometric Authentication (ICBA)[C].Hong Kong:Springer Press,2004.16-23.

二级参考文献5

共引文献6

同被引文献11

  • 1CRANE H D, WOLF D E, OSTREM J S. Identification by handwriting verification: U.S. Patent 4,040,010[P]. 1977-8-2.
  • 2PLAMONDON R, SRIHARI S N. Online and off-line handwriting recognition: a comprehensive survey[J]. Pattern Analysis and Machine Intelligence, IEEE Transactiorls on, 2000, 22(1): 63-84.
  • 3GRAVES A, SCHMIDI-IUBER J. Oftline handwriting recognition with multidimensional recurrent neural networks[C]//Advances in Neural Information Processing Systems, Canada, 2009: 545-552.
  • 4VUORI V. Adaptive methods for on-line recognition of isolated handwritten characters[D]. Helsinki: Helsinki University of Technology, 2002.
  • 5MARTENS R, CLAESEN L. Dynamic programming optimisation for on-line signature verification[C]//Proceedings of the Fourth International Conference on, IEEE, Ulm, GERMANY, 1997: 653-656.
  • 6XU L, KRZYZAK A, SUEN C Y. Methods of combining multiple classifiers and their applications to handwriting recognition[J]. Systems, man and cybernetics, IEEE transactions on, 1992, 22(3): 418-435.
  • 7BAHLMANN C, HAASDONK B, BURKHARDT H. Online handwriting recognition with support vector machines-a kernel approach[C]//Frontiers in handwriting recognition, 2002. proceedings. eighth international workshop on, IEEE, Canada, 2002: 49-54.
  • 8HU J, BROWN M K, TURIN W. HMM based online handwriting recognition[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1996, 18(10): 1039-1045.
  • 9SHU H. On-line handwriting recognition using hidden Markov models[D]. USA: Massachusetts Institute of Technology, 1996.
  • 10CHO S J, KIM J H. Bayesian network modeling of strokes and their relationships for on-line handwriting recognition[J]. Pattern Recognition, 2004, 37(2): 253-264.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部