摘要
当x2+x+1不是g(x)的因子,g(x)和(x2+x+1)g(x)分别是二元线性循环码c(x)和Csub(x)的生成多项式时,则Csub(x)是c(x)的子码.恰当选用c(x)/Csub(x)的4个余式c(x)转换为子码,然后对子码捕错.当错误矢量E(x)的重量W[E(x)]≤t,且有连续k位为零时,就能正确译码.
Assume that (x2+x+1) is not an irreducible factor of g(x),g(x) and (x2+x+1)g(x) are generator polynomials of linear cyclic codes,c(x) and csub(x) over GF(2) respectively,then csub(x) is subcode of the c(x). Selecting 4 redundant factories of the c(x)/csub(x) properly,transfering c(x) into subcode form and error-trapping decoding for them, the decoding process can be performed correctly only if the weight, W[E],of the error vector,E(x),is not larger than t and there exist k- 2consecutive zeros. This decoding technique not only improves the error correcting ability, but also can get the output of the sortting decoding form with easy implementation.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
1996年第3期283-287,共5页
Journal of Sichuan University(Natural Science Edition)
关键词
子码
捕错译码
分类译码
译码
subcode, error-trapping decoding, sortiing decoding