期刊文献+

煤及生物质共超临界水气化过程中的协同效应 被引量:7

Synergistic Effect in Co-Gasification of Coal and Biomass in Supercritical Water
下载PDF
导出
摘要 在自行研制的连续管流式煤及生物质共超临界水气化制氢装置上,对甘肃华亭烟煤、羧甲基纤维素钠(生物质模型化合物)及其两者的混合物在反应器壁温650℃、系统压力25 MPa、停留时间30 s、NaOH质量分数为0.1%的条件下进行了实验研究.实验表明:气体产物主要由H2、CO2和CH4组成,其中H2的体积分数可高达60%以上;气体产物中未检测到N和S,含N和S的污染物以液相排除,极大地减少了大气污染.研究发现煤与羧甲基纤维素钠共超临界水气化过程中在产氢率和气化率上出现了明显的协同效应,进一步提出协同效应主要由超临界水中的自由基反应引起.结果表明,煤及生物质共超临界水气化制氢是一种富有前景的洁净能源转化新技术. Experiments of co-gasification of biomass and coal in supercritical water (SCW) are conducted to investigate any synergy between biomass and coal for enhancing coal gasification and hydrogen production. A thermal-catalytic reactor with continuous flow is employed to co-gasify Hua-Ting bituminous coal, sodium carboxymethylcellulose (a model compound of biomass) and their blends under a reactor with wall temperature of 650 ℃, pressure 25 MPa, and a residence time 30 s and 0.1% NaOH additive. The experimental results show that the produced gases consist mainly of H2, CO2 and CH4, and the molar fraction of hydrogen reaches in excess of 60% Nitrogen or sulfur is not detected in the produced gases, and contaminations with nitrogen or sulfur are discharged by liquid. A synergistic effect between coal and sodium carboxymethylcellulose is observed on the hydrogen yield and the gasification efficiency, and that the synergistic effect is mainly resulted from free radical reactions in SCW is proposed further. The present work indi- cates hydrogen production from co-gasification of biomass and coal in SCW is a promising new technology for clean energy conversion.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第5期506-509,共4页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展规划资助项目(2003CB214500) 国家自然科学基金资助项目(50323001)
关键词 协同效应 制氢 羧甲基纤维素钠 超临界水 共气化 synergistic effect hydrogen production coal sodium carboxymethylcellulose supercritical water cogasification
  • 相关文献

参考文献19

  • 1Liu X,Li B,Miura K.Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low-rank coal by using a new distributed activation energy model [J].Fuel Process Technol,2001,69(1):1-12.
  • 2Hong G T,Spitzer M H.Supercritical water partial oxidation [R].Hydrogen Program Review,NREL/CP-610-32405.Berkeley,USA:Department of Energy,2003.1-18.
  • 3Tsutsumi A.Liquefaction of Ishikari coal using supercritical water [J].Fuel Energy Abstr,1995,36(1):253-253.
  • 4Aida T M,Sato T,Sekiguchi G,et al.Extraction of Taiheiyao coal with supercritical water-phenol mixtures [J].Fuel,2002,81(1):1453-1461.
  • 5Timpe R C,Mann M D,Pavlish J H,et al.Organic sulfur and hap removal from coal using hydrothermal treatment [J].Fuel Process Technol,2001,73(2):127-141.
  • 6Antal M J Jr,Allen S G,Schulman D,et al.Biomass gasification in supercritical water [J].Ind Eng Chem Res,2000,39(11):4044-4053.
  • 7Douglas C E,Gary G N,Todd R H,et al.Chemical processing in high-pressure aqueous environments,7:process development for catalytic gasification of wet biomass coal-water slurrys [J].Ind Eng Chem Res,2004,43(1):1999-2004.
  • 8Usui Y,Minowa T,Inoue S,et al.Selective hydrogen production from cellulose at low-temperature catalyzed by supported group 10 metal[J].Chem Lett,2000,346(10):1166-1167.
  • 9Kruse A,Gawlik A.Biomass conversion in water at 330~4 100 ℃ and 30~50 MPa identification of key compounds for indicating different chemical reaction pathways [J].Ind Eng Chem Res,2003,42(2):267-279.
  • 10Hao X H,Guo L J,Mao X,et al.Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water [J].Int J of Hydrogen Energy,2003,28(1):55-64.

二级参考文献25

  • 1Antal J M Jr, Allen S G, Schulman D, et al. Biomass gasification in supercritical water[J]. Ind Eng Chem Res, 2000,39(11):4 044-4 053.
  • 2Elliott D C, Neuenschwander G G, Hart T R, et al. Chemical processing in high-pressure aqueous environments, 7: process development for catalytic gasification of wet biomass feedstocks[J]. Ind Eng Chem Res, 2004, 43(9):1 999-2 004.
  • 3Usui Y, Minowa T, Inoue S, et al. Selective hydrogen production from cellulose at low-temperature catalyzed by supported group 10 metal[J]. Chem Lett, 2000,346(10):1 166-1 167.
  • 4Kruse A, Gawlik A. Biomass conversion in water at 330-410 ℃ and 30-50 MPa identification of key compounds for indicating different chemical reaction pathways[J]. Ind Eng Chem Res, 2003, 42(2): 267-279.
  • 5Hao X H, Guo L J, Mao X, et al. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water[J]. International Journal of Hydrogen Energy, 2003,28(1): 55-64.
  • 6Lin Shiying, Harada M, Suzuki Y, et al. Hydrogen production from coal by separating carbon dioxide during gasification [J]. Fuel, 2002,81(16):2 079-2 085.
  • 7Hong G T, Spitzer M H. Supercritical water partial oxidation[R]. Hydrogen Program Review, NREL/CP-610-32405. Berkeley,USA: Department of Energy,2003.1-18.
  • 8Pinto F, Franco C, Andre' R N, et al. Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system[J]. Fuel, 2003,82(15-17):1 967-1 976.
  • 9Savage P E, Gopalan S, Mizan T I, et al. Reaction at supercritical conditions: applications and fundamentals [J]. AIChE, 1995,41(7): 1 723-1 778.
  • 10Lin Shiying, Harada M, Suzuki Y,et al. Continuous experiment regarding hydrogen production by coal/CaO reaction with steam I:gas products[J].Fuel, 2004, 83(7-8):869-874.

共引文献26

同被引文献167

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部