期刊文献+

脑功能光学成像的迭代广义指示函数分析法 被引量:1

Recursive Generalized Indicator Functions Method for Analyzing the Optical Imaging of Functional Brain
下载PDF
导出
摘要 在脑光学功能成像领域,由T.Yokoo等人提出的广义指示函数法(Generalized Indicator Functions;G IF)能够在极低信噪比下有效地提取大脑行为模式图.但进一步研究发现,该算法在处理脑功能光学图像序列时存在计算量大的缺点.为解决一问题,本文将W eng等在处理FERET人脸数据库时提出的一种迭代算法与G IF算法相结合,给出了一种迭代格式的G IF算法———RG IF(Recursive G IF),RG IF算法利用迭代计算的特点能大幅削减计算量.利用仿真和实验数据对G IF和RG IF算法进行了对比分析,结果表明RG IF不仅能够大大节省计算时间,同时检测效果与G IF相当. In the analysis of optical imaging of functional brain,the generalized indicator functions (GIF) algorithm presented by T. Yokoo,etc. is an efficient method to extract the brain activity map. But further study shows that this algorithm has the shortage of heavy computation in dealing with brain image series. In order to resolve this problem, a recursive GIF (RGIF) algorithm is presented,which is the combination of Weng's recursive algorithm in dealing with the FERET face database and the GIF algorithm, the RGIF algorithm can sharply reduce the computation utilizing the characteristic of recursive algorithm. We compare the GIF/and RGIF algorithms using the simulated and experimental datum, the results show that the RGIF algorithm can relieve the computational burden substantially with at almost the same computing precision as that with GIF algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第4期664-669,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.30370416) 国家杰出青年科学基金(No.60225015) 高等学校优秀青年教师教学科研奖励计划
关键词 脑光学功能成像 广义指示函数法 迭代广义指示函数法 optical imaging functional brain generalized indicator functions recursive algorithm
  • 相关文献

参考文献13

  • 1Toga A W, Mazziotta J C. Brain Mapping:The Methods[ M ]. Second Edition. Holland: Academic Press, 2002.97 - 140.
  • 2Arieli A, Sterkin A, Grinvald A, et al. Dynamics of ongoing activity:explanation of the large variability in evoked cortical responses [ J ]. Science, 1996, 273(5283) :1868 - 1871.
  • 3Blasdel G, Salama G. Voltage sensitive dyes reveal a modular organization in monkey striate cortex [ J ]. Nature, 1986,321 (6070) :579 - 585.
  • 4Sirovich L, Everson R, Kaplan E, et al. Modeling the functional organization of the visual cortex [ J ]. Physica D,1996,96(1-4) :355-366.
  • 5Everson R, Knight B, Sirovich L. Separating spatially distributed response to stimulation form background. Ⅰ. optical imaging [ J ]. Biol Cybern, 1997,77 (6) :407 - 417.
  • 6Gabby M, Brennan C, Kaplan E, et al. A principal components-based method for the detection for neuronal activity maps: Application to optical imaging [ J ]. NeuroImage ,2000,11 ( 4 ) : 313 - 325.
  • 7Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis[ J]. Neural Computation,1997,9(7) : 1483 - 1492.
  • 8Sttter M, SchieBl I, Otto T, et al. Principal component analysis and blind separation of sources for optical imaging of intrinsic signals[J]. NeruoImage,2000,11 ( 5 ) :482 - 490.
  • 9Yokoo T, Knight B, Sirovich L. An optimization approach to signal extraction from noisy multivariate data [ J]. NeruoImage,2001,14(6) :1309 - 1326.
  • 10Weng J Y, Zhang Y L, et al. Candid covariance-free incremental principal component analysis[ J ]. IEEE Trans PAMI ,2003 ,25 ( 8 ) : 1034 - 1040.

同被引文献12

  • 1Toga A W,Mazziotta J C. Brain Mapping: The Methods[M]. Second Edition. San Diego, CA: Academic Press, 2002.97 - 140.
  • 2Blasdel G G, Salama G. Voltage sensitive dyes reveal a modular organization in monkey striate cortex [J].Nature, 1986, 321 (6070) :579-585.
  • 3Somborger A, Sailstad C, Kaplan E, et al. Modeling the functional organization of the visual cortex [ J]. Physica D, 1996,96 (1-4) : 355 - 366.
  • 4Stetter M, Schieβl I, Otto T, et al. Principal component analysis and blind separation of sources for optical imaging of intrinsic signals[ J ]. Neruolmage, 2000,11 (5) : 482 - 490.
  • 5Jung T P, Scott M,Mckeown M J,et al. Imaging brain dynamics using independent count analysis [J].Proceedings of the IEEE,2001,89(7) : 1107 - 1122.
  • 6Schieβl I, Stetter M, Mayhew J, et al. Blind signal separation from optical imaging recordings with extended spatial decorrelation [ J]. IEEE. Transactions on Biomedical Engineering, 2000, 47(5) :573 - 577.
  • 7Mayhew J, Askew S, Zheng Y. Cerebral vasomotion: a 0.1-Hz oscillation in reflected light Imaging of neural activity [ J] .Neuro Image, 1996,4(3) : 183 - 193.
  • 8Ziehe A, Miiller K R. TDSEP-an effcient algorithm for blind separation using time structure [ A ]. Niklasson L, Boden M, Ziemkec T,eds.In of Proceedings of ICANN'98[ C]. Berlin: Springer-Verlay, 1998.675 - 680.
  • 9Thomson D J. Spectrum estimation and harmonic analysis[ J]. Proceedings of the IEEE, 1982,70(9) : 1055 - 1096.
  • 10Somborger A, Sailstad C, Kaplan E, et al. Spatiotempor analysis of optical imaging data[J]. NeuroImage, 2003,18(3) :610 - 621.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部