期刊文献+

基于公共服务的知识管理系统的研究 被引量:1

Research of Knowledge Management System Based on Public Service
下载PDF
导出
摘要 随着知识经济时代的到来,知识管理的成效已成为现代企业管理创新与发展亟待解决的重大问题。该文就所实现的软件企业知识管理的主要工具——“基于公共服务的知识管理系统”的架构和采用技术进行了探讨。该系统建立了一套完善的知识管理机制,并通过运用协同过滤聚类算法进行知识推送、运用频繁模式增长算法进行知识关联、运用本体技术进行全文检索等,使知识管理机制的循环过程得到实现。 The 21st century is the era of knowledge economy. How to deploy KM successfully has already become the important problem, This thesis discusses the architecture of knowledge management system based on public service. The system builds a knowledge management mechanism, which uses the algorithms of K-means, FP-growth and ontology to evaluate knowledge, associate knowledge and search knowledge, and realizes the recurrence process of KM mechanism.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第9期59-61,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2002AA113050)
关键词 公共服务 知识管理机制 知识管理系统 Public service Knowledge management mechanism Knowledge management system
  • 相关文献

参考文献6

  • 1贾育.构件库概说[Z].http://dev.csdn.net/article/15/article/15/15401.shtm.
  • 2左美云.知识管理的激励机制[Z].http://www.e-works.net.cn/ewkA rticles/Category 111/Article8718.htm.
  • 3Swartout R P B,Knight K,Russ T.Toward Distributed Use of Large-scale Ontologies[C].Proc.of the AAAI Spring Sympusium Series,Workshop on Ontological Engineering,1997:138-148.
  • 4Mc Guinness D L,Harmelen F V.OWL Web Ontology Language Overview (W3C Recommendation)[Z].http://www.w3.org/T R/2004/REC-owl-features-20040210,2004.
  • 5邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:559
  • 6Han Jiawei,Kamber M.Data Mining Concepts and Techniques[M].Morgan Kaufmann,1999-09.

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献558

同被引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部