期刊文献+

基于几何参数的步态识别研究 被引量:1

Gait Recognition Based on Gait’s Geometry Parameter
下载PDF
导出
摘要 针对人体行走时在空间呈现出的不同几何模式,介绍了一种基于几何参数的步态识别方法,利用Gabor滤波器在不同角度上的滤波特性,对步态图像滤波的基础上,通过扫描二值图像提取人体的步态几何特征:两脚间的宽度、两腿与人体垂直中线的夹角以及两腿交叉点的坐标;步态的分类采用改进后的动态时间扭曲(DTW)方法进行动态模板匹配,基于CASIA步态库的测试表明,该方法的分类准确率达90%。实验结果表明,基于几何参数的步态识别,可以有效地区分不同的运动主体。 Gaits recognition can be used in identifying or intelligent monitor systems, As man walking, their gaits show different geometry patterns, A gait recognition method based on gait's geometry parameter is introduced, Firstly a seri^d of gait image is filtered by Gabor filters for its different character in different direction. Then the gait's geometry parameters are get by scanning the filtered images. Each image is presented by an abstract point which has four dimensions: step gap, angle fore leg swung refer to middle vertical line of body, angle back leg swung refer to middle vertical line of body and the cross point height two legs crossed, Last reference templates are built and gait patterns are classified based on weighted dynamic time warping matching. Test on CASIA gait Lib, shows that the correction of classification reaches on 90%. Hence, result shows that the gait recognition based on gait's geometry parameter can be used to distinguish different moving person effectively.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第9期188-189,192,共3页 Computer Engineering
基金 北京市自然科学基金资助项目(4031004) 北京市教委科技发展计划资助项目(km200310005006)
关键词 步态识别 GABOR滤波 动态时间扭曲 Gait recognition Gabor filter Dynamic time warping (DTW)
  • 相关文献

参考文献4

  • 1Hoffmana D,Flinchbaugh B.The Interpretation of Biological Motion[J].Biological Cybernetics,1982,42(3):195-204.
  • 2Fujiyoshi H,Lipton D.A Real-time Human Motion Analysis by Image Skeletonization[C].Proc.IEEE Workshop on Applications of Computer Vision,Princeton,NJ,1998:15-21.
  • 3Daugman J.Entropy Reduction and Decorrelation in Witual Coding by Oriented Neural Receptive Filed[J].Trans.on Biomedical Engineering,1989,36(1):107-114.
  • 4陆玫,包闻亮,李锋.一种波形匹配新算法:V-P-V算法─—用于中文签名真伪识别[J].复旦学报(自然科学版),1996,35(5):496-502. 被引量:6

二级参考文献2

  • 1Cheng Y C,IEEE Trans PAMI,1985年,7卷,3期,299页
  • 2Lu S Y,IEEE Trans PAMI,1984年,6卷,2期,249页

共引文献5

同被引文献6

  • 1Niyogi S, Adelson E. Analyzing Gait with Spatiotemporal Surfaces[C]//Proc. of Workshop on Motion of Non-rigid and Articulated Objects. [S. l.]: IEEE Press, 1994: 64-69.
  • 2Kale A, Rajagopalan A N, Sundaresan A, et al. Identification of Humans Using Gait MD20740[D]. Maryland, USA: Center for Automation Research, University of Maryland at College Park, 2002.
  • 3Lee L. Gait Analysis for Classification[R]. The City of Cambridge Massachusetts, USA: Massachusetts Institute of Technology Artificial Intelligence Laboratory, AI Technical Report: 2003-014, 2003.
  • 4Cunado D, Nixon M, Carter J. Using Gait as a Biometric, via Phase-weighted Magnitude Specter[C]//Proc. of International Conference on Audio and Video Based Biometric Person Authentication. Crans-Montana, Switzerland: [s. n.], 1997: 95-102.
  • 5Kale A, Sundaresan A, Rajagopalan A N, et al. Identification of Humans Using Gait[J]. IEEE Trans. on Image Processing, 2004, 13(9): 1163-1173.
  • 6Sarkar S, Phillips P J, Liu Z I, et al. The Human ID Gait Challenge Problem: Data Sets, Performance, and Analysis[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(2): 162-177.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部