期刊文献+

球面三角形上的数值积分公式的构造

Constructing Cubature Formulae on an Arbitrary Spherical Triangle
原文传递
导出
摘要 研究定义在球面三角形上函数的数值积分,通过积分的插值多项式函数构造具有多项式精度的插值型求积公式,以及给出精确计算球面三角形上多项式函数的方法.通过把其定义域上的积分化为平面单纯形{u=(u1,u2,u3):u1+u2+u3=1,u1,u2,u3≥0}上的积分,然后利用平面单纯形上数值积分公式给出其在球面三角形上的对d次齐次多项式精确成立Gauss求积分式的构造方法,给出了基于平面单纯形上Gauss型求积公式的一种近似求积公式,这种方法确定求积结点与求积系数比较简单,从而更具有应用前景. The main purpose is to construct cubature formulae on an arbitrary spherical triangle. Firstly, a method for accurately computing the definite integral of spherical polynomial functions on a spherical triangle is proposed. Then interpolating cubature formulae is given based on La_grange interpolation formulae. Secondly, it makes use of the cubature formulac on the triangle to construct cubature formulae on the correspondent spherical triangle. Finally, some tables to show the exact points and correspondent coefficients are given in these formulae.
作者 卜天奇
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期254-261,共8页 Journal of Fudan University:Natural Science
关键词 球面三角形 插值型求积公式 Gauss求积公式 spherical triangle interpolating cubature formulae Gauss quadrature formulae
  • 相关文献

参考文献6

  • 1Radon J. Zur mechanischen Kubatur[J ]. Monatsh Math, 1948,52 : 286-300.
  • 2Stroud A H. Integration formulas and orthogonal polynomials for variables[J]. SIAM J Numer Anal, 1969,6:222-229.
  • 3Sloan I H, Womersely R S. Constructive polynomial approxhnation on the sphere[ J ]. J Appr Theory, 2000,103 :91-118.
  • 4Alfeld P,Neamtu M, Sehumaker L L. Fitting scattered data on sphere-like surfaces using spherical splines[J].CAGD, 1996,73 : 5-43.
  • 5Luo Z X,Wang R H. Stieltjes type theorems for orthohonal polynomials of two variables[J]. J Math Anal & A ppl , 2002,268:171-183.
  • 6Cools R,Mysovskikhb I P,Schmidc H J. Cubature formulae and orthogonal polynomials[J]. J Comput Anal & Appl,2001,127:121-152.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部