期刊文献+

基于粗糙集的属性约简算法 被引量:1

Attribute Reduction Algorithm Realization in Rough Set
下载PDF
导出
摘要 属性约简是粗糙集理论研究的关键问题之一,现已证明寻找一个决策表的最优约简是N P-hard问题。本文首先介绍可辨识矩阵属性约简的基本算法并对求核算法进行了改进。在此基础上给出决策表中属性重要性的两种度量,并以此为启发式信息,提出了一种属性约简的启发式算法。最后,实验结果表明,该算法在大多数情况下能有效地获得决策表的最优约简。 Attribute reduction is one of the key topics in the rough set theory field. It has been proven that computing the optimal reduction of decision table is an N P - hard problem, Firstly, this paper introduces the basic attribute reduction algorithm in discernibility matrix and the improved core algorithm. Then, based on it two types of significance of attribute in a decision table are defined, then, an algorithm which uses rough set theory with heuristic information is proposed. Finally, the experimental result shows that the algo rithm can obtain the optimal attribute reduction of decision table efficiently in most cases.
机构地区 忻州师范学院
出处 《忻州师范学院学报》 2006年第2期43-46,共4页 Journal of Xinzhou Teachers University
基金 山西省教育厅高等学校科技开发项目(20041335)
关键词 粗糙集理论 可辨识矩阵 启发式算法 rough set theory discernibility matrix core heuristic algorithm
  • 相关文献

参考文献7

二级参考文献25

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997..
  • 3PawlakZ.Rough Sets[J].International Journal of Computer and Information Science, 1982; 11 (5): 341~356
  • 4PawlawZ,WongSKM,ZiarkoW.Roughset:Probalistic versus deterministic approach[J].Int J Man-machine Studies, 1988 ;29: 81 ~95
  • 5HuXiaohua,CerconeN.Mining knowledge rules from databases:A rough set approach[C].In:Proc of 12th International Conference on Data Engineering, 1996: 96~105
  • 6JelonekJ,KrawiecK,SlowinskiR.Rough set reduction of attributes and their domains for neuralnetworks[J].Computational Intelligence, 1995;11 (2): 339~347
  • 7ZhaoKai ,WangJue. A reduction Algorithm Meeting Users' repuirements[J].J Comput Sci & Technol,2002;17(5):578~593
  • 8Yao Y, Butz C.J. On Information-Theoretic Measures of Attribute Importance[M]. Methodologies for Knowledge Discovery and Data Mining. 1992,231-238.
  • 9Skowron A, Rauszer C. The discernibility matrices and ftmctions in information system[M]. Kluwer Academy Publishers. 1992.331-362.
  • 10Walezak W, Massart D.L. Tutorial. Rough sets theory[M], Chemometries and Intelligent Laboratory Systems. 1999,47.. 1-16.

共引文献177

同被引文献6

  • 1刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 2Pawlak Z.Rough sets[J].International Journal of Computer and Inform -ation Sciences,1982,11:341-356.
  • 3Zhonn N,Dong J Z.Using Rough Sets with Heuristics for Feature Selections[J].Journal of Intelligent Information Systems,2001,(16):199-214.
  • 42005年中国模糊逻辑与计算智能联合学术会议论文集[M].安徽:中国科学技术大学出版社,2005.
  • 5Murthy S K.On Growing Better Decision Trees from Data.PhD thesis[D].Department of Computer Science.Johns Hopkins University,Baltimore,Maryland,1995.
  • 6Jelonek J,Krawiec K,Slowinski R.Rough set reduction of attributes and their domains for neural networks[J].Computational Intelligence,1995:11(2):339-347.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部