期刊文献+

矩阵A的广义逆A_(T,S)^((2))快速并行算法(英文)

Fast parallel algorithm for computing the generalized inverse A_(T,S)^((2)) of a matrix A
下载PDF
导出
摘要 提出了计算广义逆A_(T,S)^(2)的一个并行算法,并且证明了理论结果:广义逆A_(T,S)^(2)的并行计算复杂性,一般约束线性方程组Ax=6,x∈T,b∈R(A)求解,和计算m+n-h阶矩阵A的特征多项式和行列式有同样的增长率,其中h= rank(G),R(G)=T和N(G)=S. We propose a parallel algorithm for computing the generalized inverse AT,S^(2) and prove a theoretical result: the parallel arithmetic complexities for computing the generalized inverse AT,S^(2), the general restricted linear equation Ax = b, x ∈ T, b ∈ R(A) , and the characteristic polynomial and the determinant of the matrixA of order m + n - hhave same growth rate, where h = rank(G), R(G) = TandN(G) = S.
出处 《上海师范大学学报(自然科学版)》 2006年第2期6-12,共7页 Journal of Shanghai Normal University(Natural Sciences)
基金 Supported by the Science Foundation of Shanghai Municipal Education Commission(CW0519).
关键词 并行算法 并行计算复杂性 广义逆AT S^(2) parallel algorithm parallel arithmetic complexity generalizedreverse AT,S^(2)
  • 相关文献

参考文献7

  • 1BEN-ISRAEL A,GREVILLE T N E.Generalized Inverses:Theory and Applications.2nd Edition[ M ].New York:Springer Verlag,2003.
  • 2CHEN Y L.A Cramer rule for solution of the generalrestricted linear equation[ J ].Linear and Multilinear Algebra,1993,34:177-186.
  • 3CHEN Y L.Finite Algorithms for the (2)-generalizedinverse AT,S(2) [J].Linear and Multilinear Algebra,1995,40:61-68.
  • 4CSANKY L.Fast parallel matrix inversion algorithm[J].SIAM J Comput,1976,5:618-623.
  • 5WANG G R,LU S Q.Fast parallel algorithm for computingthe generalized inverse A+and AMN+[ J ].J Comput Math,1988,6:348-354.
  • 6WANG G R,WEI Y M,QIAO S Z.Generalized Inverses:Theory and Computations[M].Beijing/New York:Scinece Press,2004.
  • 7WEI Y M.A characterization and representation of thegeneralized inverse AT,S(2) and its applications [J].Linear Algebra Appl,1998,280:87-96.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部