摘要
提出了计算广义逆A_(T,S)^(2)的一个并行算法,并且证明了理论结果:广义逆A_(T,S)^(2)的并行计算复杂性,一般约束线性方程组Ax=6,x∈T,b∈R(A)求解,和计算m+n-h阶矩阵A的特征多项式和行列式有同样的增长率,其中h= rank(G),R(G)=T和N(G)=S.
We propose a parallel algorithm for computing the generalized inverse AT,S^(2) and prove a theoretical result: the parallel arithmetic complexities for computing the generalized inverse AT,S^(2), the general restricted linear equation Ax = b, x ∈ T, b ∈ R(A) , and the characteristic polynomial and the determinant of the matrixA of order m + n - hhave same growth rate, where h = rank(G), R(G) = TandN(G) = S.
出处
《上海师范大学学报(自然科学版)》
2006年第2期6-12,共7页
Journal of Shanghai Normal University(Natural Sciences)
基金
Supported by the Science Foundation of Shanghai Municipal Education Commission(CW0519).
关键词
并行算法
并行计算复杂性
广义逆AT
S^(2)
parallel algorithm
parallel arithmetic complexity
generalizedreverse AT,S^(2)