期刊文献+

基于概念学习的过滤模板获取方法 被引量:1

Method of Filtering Profile Extraction Based on Concept Learning
下载PDF
导出
摘要 基于内容的文本过滤关键在于建立有效的过滤模板。一种高效的过滤模板可以降低整个文本过滤系统对机器学习机制的要求,提高系统的过滤效率。提出了一种基于概念学习的过滤模板获取方法。该方法结合处理文本特征项的需要改进了概念学习方法中的寻找极大特殊假设算法,并应用新的算法从给定的少量训练文本中提取用户过滤模板。实验结果表明,与直接使用主题描述作为过滤模板的方法相比,较大地提高了过滤精度,可以达到比较令人满意的过滤效果。 The key to content - based text filtering consists in constructing an effective filtering profile. An effective filtering profile can debase the request from the whole text filtering system to the machine learning mechanism and improve filtering efficiency of system. This paper brings forward a method for constructing filtering profile The method improves the find - maximum - special - supposion algorithm in the methods of concept learning by combining the need for deaing with the text feature items and constructs filtering profile from a few training texts by using the new algorithm. The result of experiments shows that, compared with the method which uses the subject- description as filtering profile straight, this method improves filtering precision markedly,and it can obtain the satisfying filtering purpose.
出处 《计算机技术与发展》 2006年第5期53-55,共3页 Computer Technology and Development
基金 山东省中青年科学家奖励基金(03BS009)
关键词 文本过滤 过滤模板 概念学习 TFFind—S算法 text filtering filtering profile concept learning TFFind- S algorithm
  • 相关文献

参考文献6

二级参考文献28

  • 1Belkin, N.J., Croft W.B.. Information filtering and information retrieval: two sides of the same coin. Communication of ACM,1992,35(12) :29 ~ 38
  • 2pazzani M., Billsus D.. Learning and revising user profiles:the identification of interesting Web sites. Machine Learning, 1997,27(3) :313 ~ 331
  • 3Salton G., Fox E. A., Wu H.. Extended boolean information retrieval. Communications of the ACM, 1983,26 ( 11 ): 1022 -1036
  • 4Croft W. B.. Document representation in probabilistic models of information retrieval. Journal of the American Society for Information Science, 1981,32(6) :451 ~ 457
  • 5Yart T.W., Garcia-Molina, H.. Index structures for information filtering under the vector space model. In: Proceedings of the10th International Conference on Data Engineering, Alamitos,CA, IEEE, 1994,337 ~ 347
  • 6Deerwester S., Dumais S.T., Landauer T. K. et al.. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 1990,41 (6) :391 ~ 407
  • 7Papadimitriou C. H., Raghavan P., Tamaki H. et al., Latent semantic indexing: a probabilistic analysis. In: Proceedings of PODS' 98, Seattle, WA. 1998,159 ~ 268
  • 8Ando R.. The document representation problem: an anlysis of LSI and iterative residual rescaling. Ph. D. Thesis. Cornell Computer Science Technical Report TR2001 - 1843,2001
  • 9Foltz P.W.. Using latent semantic indexing for information filtering. In : Proceedings of the ACM Conference on Office Information Systems, Boston, USA, 1990,40 ~ 47
  • 10Lee, D. D., Seung, H. S. Learning the parts of objects by nonnegative matrix factorizaiton. Nature, 1999,401:788 ~ 791

共引文献144

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部