期刊文献+

基于支持向量回归的零件直线边缘亚像素图像检测 被引量:5

Mechanical part linear edge sub-pixel image detection based on support vector regression
下载PDF
导出
摘要 以圆锥螺纹为研究对象,讨论了基于支持向量回归的机械零件直线边缘的亚像素图像检测方法。采用中值滤波、二值变换等算法,对通过电荷耦合器件采集的圆锥螺纹图像进行处理,获得了螺纹牙形的直线部分的像素表征,并以此构成训练集,对回归型支持向量机进行训练,得到了螺纹牙形的直线方程表示。通过支持向量回归获得的拟合直线是螺纹牙形的亚像素表示,据此对锥螺纹的主要参数进行检测,大大降低了电荷耦合器件的离散性和系统噪声对测量结果的影响。实验表明,本方法具有测量速度较快、测量精度较高的特点。 Taking the conical thread as the object of study, a sub-pixel image detection method for the mechanical part linear edge based on the support vector regression was proposed. Through processing the conical thread image recorded by the charge coupled device(CCD) , the pixel characterization of the straight portion of the thread form could be obtained with the algorithm of median filter, binary transform etc, to make up the training set. The support vector machine for regression was trained by the training set and the straight line equation of the thread form was obtained which is the expression of the sub-pixel . Making use of it to detect the main parameters of the conical thread, the effect of the discreteness of the CCD and the system noise on the detection results were significantly reduced. The experiment results show that the suggested method is characterized by high detection speed and high precision.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第3期371-375,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省科技发展计划项目(20040534)
关键词 计算机应用 图像检测 电荷耦合器件 亚像素 支持向量回归 computer application image detection CCD sub-pixel support vector regression
  • 相关文献

参考文献9

  • 1Vapnik V. The nature of statistical learning theory [ M ]. New York : Springer, 1995:89-300.
  • 2Cristianini N, Shawe-Taylor J. An Introduction to support vector machines and other kernel-based learning methods [ M ]. Cambridge : Cambridge University Press, 2000 : 121-200.
  • 3Martin P, Refregier P. Influence of the noise model on level set active contour segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 ( 6 ) : 799 -803.
  • 4宋志刚,王龙山,陈向伟.利用数字图像处理技术检测锥螺纹[J].吉林大学学报(工学版),2004,34(2):248-251. 被引量:22
  • 5Platt J. Fast training of support vector machines using sequential minimal optimization [ C ]//Advances in Kernel Methods-Support Vector Learning. MA: MIT Press, 1998 : 185-208.
  • 6Smola A, Scholkopf B. A tutorial on support vector regression [ J ]. Statistics and Computing, 2004, 14 : 199- 222.
  • 7Shevade S, Keerthi S. Improvements to the SMO algorithm for SVM regression [ J ]. IEEE Transactions on Neural Networks, 2000,11(5) :1183-1188.
  • 8王家忠,王龙山,李国发,丁宁.外圆纵向磨削表面粗糙度的模糊预测与控制[J].吉林大学学报(工学版),2005,35(4):386-390. 被引量:7
  • 9王家忠,王龙山,李国发,周桂红,丁宁.轴类零件外圆纵向磨削尺寸智能预测和控制系统[J].吉林大学学报(工学版),2006,36(2):204-208. 被引量:5

二级参考文献19

  • 1王家忠,王龙山,李国发,丁宁.外圆纵向磨削表面粗糙度的模糊预测与控制[J].吉林大学学报(工学版),2005,35(4):386-390. 被引量:7
  • 2何斌 马天予 王运坚 朱红莲.Visual C++数字图像处理技术[M].北京:科学技术出版社,2000..
  • 3Choi Hyhn-scung ,Seo Jang-Ryeol ,Sunkyulee.Machining error compensation of extern cylindrical grinding using a thermally actuated rest [J].Journal of Materials Processing Technology,2002,127:280-285.
  • 4Wect M,Hennes N,Schulz A.Dynamic behaviour of cylindrical traverse grinding processes [J].Annals of the CIRP,2001,50(1):213-216.
  • 5Gao Yong sheng.Experimental validation of a dynamic workpiece steady control method for traverse grinding[J].Journal of Manufacturing Sience and Engineering,1998,120:236-245.
  • 6Pawel Lezanski.An intelligent system for grinding wheel condition monitoring [J].Journal of Materials Processing Technology,2001,109:258-263.
  • 7Azouzi R.On-line prediction of surface finish and deviation in turning using geneural nerwork base sensor fusion [J].Int Mach Tools Manufact,1997,9:37-47.
  • 8Albert J Shiha,Nien L Lee.Precision cylindrical face grinding [J].Precision Engineering,1999,23:177-184.
  • 9Arup Kumar Nandi,Dilip Kumar Pratihar.Design of a genetic-fuzzy system to predict surface finish and power requirement in grinding [J].Fuzzy Sets and Systems,2004,148:487-504.
  • 10Manuel Duarte.Lejandro Sua'rez,Danilo Bassi.Control of grinding plants using predictive multivariable neural control [J].Powder Technology,2001,115:193-206.

共引文献31

同被引文献47

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部