期刊文献+

随机波动模型参数估计的新算法及其在上海股市的实证 被引量:8

A New Algorithm for Estimating Stochastic Volatility Model and the Application in Shanghai Stock Market
原文传递
导出
摘要 研究用马尔科夫链蒙特卡罗(MCMC)算法估计随机波动模型的参数问题.基于“前向滤波,后向抽样”方法提出一种新算法,并将新算法同原有算法进行了比较.然后利用新算法对上海股市进行波动性分析,发现中国涨跌停板制度对波动的持续性估计有着重要的影响,忽视这些因素将会导致波动的持续性被高估. In this paper, A new markov chain monte carlo algorithm for estimating stochastic volatility model is given. And the new algorithm is compared with old algorithms. Then authors apply stochastic volatility model to analyze the volatility of Shanghai stock market by the new algorithm. Empirical results indicate that stochastic volatility model performs well. On the other hand empirical results also indicate that price limit have much effect on the persistence of volatility.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2006年第4期27-31,共5页 Systems Engineering-Theory & Practice
关键词 随机波动模型 马尔科夫链蒙特卡罗(MCMC) 波动 stochastic volatility model Markov chain Monte Carlo volatility
  • 相关文献

参考文献9

  • 1Jacquier E,Polson N G,Rossi P E.Bayesian analysis of stochastic volatility models(with discussion)[J].Journal of Business and Economic Statistics,1994,12,371-417.
  • 2Kim S,Shephard N,Chib S.Stochastic voaltility:Likelihood in ference and comparison with ARCH models[J].Review of Economic Studies,1998,65,361-393.
  • 3Jong P,Shephard N.The simulation smoother for time series models[J].Biometrika,1995,82,339-350.
  • 4王春峰,蒋祥林,李刚.基于随机波动性模型的中国股市波动性估计[J].管理科学学报,2003,6(4):63-72. 被引量:38
  • 5苏卫东,张世英.变截距SV模型及其在上海股市的实证[J].系统工程理论方法应用,2003,12(1):57-63. 被引量:8
  • 6Titterington D M,Smith A F M,Markov U E.Statistical Analysis of Finite Mixture Distributions[M].Chichester:John Wiley,1985.
  • 7Carter C K,Kohn R.On Gibbs sampling for state space models[J].Biometrika,1994,81,3,541-553.
  • 8Taylor S J.Modeling Financial Time Series[M].Chichester:John Wiley,1986.
  • 9Harvey A C,Ruiz E,Shephard N.Multivariate stochastic variance models[J].Review of Economic Studies,1994,61:247-264.

二级参考文献23

  • 1Engle R F. Autoregessive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, .50:987--1007.
  • 2Bollerslev T. Generalized autogressive conditional hetemscedasticity[J]. Journal of Econometrics, 1986, 31:307--327.
  • 3Clark P. A subordinated stochastic process model with finite variance for speculative process[J]. Econometrica, 1973, 41 : 135--155.
  • 4Epps T W, Epps M L. The stochastic dependence of security price changes and transaction volumes: Implications for the mixture-ofdistribution hypochesis[J]. Econometrica, 1976, 44:305--321.
  • 5Danielsson J. Estimation of dynamic stochastic volatility model for asset price determination by simulated maximum likelihood[D].Durham: Duke University, 1991.
  • 6Taylor S J. Modeling stochastic volatility[J]. Mathematical Finance, 1994, 4(2) : 183--204.
  • 7Danielsson J. Stochastic volatility in asset prices estimation with simulated maximum likelihood[J]. Journal of Econometrics, 1994,64 : 375 --400.
  • 8Kim S. Shephard N. Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models[ R]. Nuflield College, London:Oxford University, 1994.
  • 9Shephard N. Statistical Aspects of ARCH and Stochastic Volatility[R]. Nuffield College, London: Oxford University, 1995.
  • 10Bollerslev T. A conditional heteroskedastic time series model for speculative prices and rates of return[J]. The Review of Economics and Statistics, 1987, 59:542--547.

共引文献43

同被引文献71

  • 1余素红,张世英,宋军.基于GARCH模型和SV模型的VaR比较[J].管理科学学报,2004,7(5):61-66. 被引量:76
  • 2孟利锋,张世英,何信.SV模型参数估计的经验特征函数方法[J].系统工程,2004,22(12):92-95. 被引量:9
  • 3周宏山,冀云.非对称随机波动模型在中国股市的应用[J].统计与信息论坛,2007,22(4):70-73. 被引量:4
  • 4[1]Asai M McAleer,M Yu J.Multivariate Stochastic Volia-tility:A Review[J].Econometric Reviews,2006,26:145-175.
  • 5[2]Bauwens L Laurent,S Rombouts J.Multivariate GARCH:A Survey[J].Journal of Applied Econometrics,2005,21:79-109.
  • 6[3]Danielsson J.Multivariate Stochastic Volatility Models:Estimation and a Comparison with VGARCH models[J].Journal of Empirical Finance,1998,5:155-173.
  • 7[4]Gourieroux C,Monfort A,Renault E.Indirect Inference.Journal of Applied Econometrics[J].Applied Econometrics,1993,8:85-118.
  • 8[5]Taylor S.Modeling Stochastic Volatility[J].Mathem-atical Finance,1994,4(2):183-204.
  • 9[6]Yu J,Meyer R.Multivariate stochastic Volatility Models:Bayesian Estimation and Model Comparison[J].Econometric Reviews,2006,25(2):361-384.
  • 10Taylor S J.Modeling Financial Time Series[M].John Wiley and Sons.Chichester.1986:5-10.

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部