摘要
设条件(A)为:若对任意的a,b,c∈R,存在依赖于a,b,c的整系数多项式f(x,y),f(x,y)形如∑ki=0αiyixyK-i+f1(x,y),f1(x,y)为一整系数多项式,其每一项关于x的次数2,关于y的次数K(此处K=K(a,b)为依赖于a,b的正整数),∑i=0αi=1,使[f(a,b),c]=0.结论为:满足条件(A)的K the半单纯环是交换的.这是一些结论的统一推广.
Let condition (A).. if for any a, b, c ∈ R, there is a polynomial with integral coefficients f(x, y) which depended on a ,b,c. f(x,y) such that ∑^k i=0 αiy^ixy^k-i+f1(x,y),f1(x,y)is a polynomial with integral coefficients, and every ofx is not smaller than 2, the degree of y is not smaller than k(k = k(a,b) and k is positive integral which depended on a,b).
The corollary of this paper: If the Koethe half-simplicial rings satisfies condition (A), then the rings can be commutative. This is the integrate corollary of some conclusions.
出处
《数学的实践与认识》
CSCD
北大核心
2006年第4期246-249,共4页
Mathematics in Practice and Theory
基金
黑龙江省自然科学基金项目资助(9706)
关键词
整系数多项式
Koethe半单纯环
交换性
polynomial with integral coefficients
Koethe half-simplieial rings
eommutativity