期刊文献+

水文模型参数优选中率定与校核目标函数的关系研究 被引量:1

Relationship Between Calibration and Verification Objective Functions in the Optimization of Hydrological Model Parameters
下载PDF
导出
摘要 在水文模型参数优选过程中,通常很难找到一组参数值使得率定阶段和校核阶段的径流模拟误差同时达到最小,为此,我们需要采用基于Pareto关系的多目标优化方法来寻求Pareto最优解的集合。本文采用一种基于马尔可夫链蒙特卡洛(MCMC)方法的多目标优化方法来搜寻水文模型参数优选问题中Pareto解集,并以三水源新安江模型为例,给出了由率定阶段的目标函数和校核阶段的目标函数所构成的Pareto锋面。结果证明,率定阶段和校核阶段的目标函数是相互冲突的,不可能同时取最小值,由于这种Pareto关系的存在,使得我们在选择水文模型的全局最优参数值时存在很大的不确定性。因此,如何减少这种不确定性是水文模型研究中一个很重要的问题。 In the optimization of the hydrological model parameters, it is very difficult to obtain the minimum discharge simulation errors for both the calibration period and the verification period simultaneously. In such a case, the multiobjective optimization methods based on the Pareto relationship are often adopted to search for the set of the Pareto optimal solutions. In this paper, a multi-objective optimization method based on the Makov Chain Monte Carlo method is employed to search for the Pareto optimal solutions.This method is applied to the Xinanjiang model of the three water sources,and the Pareto front formed by the objectives of both the calibration and verification periods is presented. The results have shown that the objective of the calibration period is conflicted with the one for the verification period, and they cannot be minimized simultaneously. Because of the existence of such a Pareto relationship between the objectives of the calibration and verification periods, a great deal of uncertainty will arise in the selection of the so-called "global optimum parameter values" for the hydrological models. Hence, how to reduce this kind of uncertainty in the hydrological modeling remains a very important problem to be solved.
作者 熊立华
出处 《石河子大学学报(自然科学版)》 CAS 2006年第1期1-4,共4页 Journal of Shihezi University(Natural Science)
基金 国家自然科学基金(50409008) 国家重大基础研究前期研究专项(2003CCA00200) 湖北省青年杰出人才基金(2003ABB016)资助
关键词 水文模型 多目标优化 非劣解 马尔可夫链 蒙特卡洛 hydrological models multi-objective optimization non-inferior solution Markov Chain Monte Carlo
  • 相关文献

参考文献10

  • 1Goldberg D E.Genetic algorithms in search,optimization,and machine learning[M].Reading,MA:Addison-Wesley,USA,1989.
  • 2Deb K.Multi-objective optimization using evolutionary algorithms[M].New York:John Wiley & Sons,2001.
  • 3Van Veldhuizen D A,Lamont G B.Multi-objective evolutionary algorithms:analyzing the state-of-the-art[J].Evolutionary Computation,2000,8(2):125-147.
  • 4Zitzler E,Theile L.Multi-objective evolutionary algorithms:A comparative case study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
  • 5Srinivas N,Deb K.Multi-objective optimization using non-dominated sorting in genetic algorithms[J].Evolutionary Computation,1994,2(3):221-248.
  • 6陈昌巨,武秀文.求解多目标优化问题基于相对熵的Pareto解演化算法[J].华中农业大学学报,2003,22(1):65-69. 被引量:4
  • 7文瑛,蒋华,雷鸿.一类基于混合遗传算法的多目标优化方法[J].广西师范学院学报(自然科学版),2003,20(1):35-39. 被引量:6
  • 8Vrugt J A,Gupta H A,Bastidas L A,et al Effective and efficient algorithm for multi-objective optimization of hydrologic models[J].Water Resources Research,2003,39(8):1029-2002.
  • 9Silva C M,Biscaia E C.Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors[J].Computers and Chemical Engineering,2003,27(1):1329-1344.
  • 10Cheng F Y,Li D.Genetic algorithm development for multi-objective optimization of structures[J].American Institute of Aeronautics and Astronautics Journal,1998,36(6):1105.

二级参考文献8

  • 1[1]Van Veldhuizen D A, Lamont G B. Multi-objective evolutionary algorithms:analyzing the state-o-the-art. Evolutionary Computation, 2000,8(2): 125~147
  • 2[2]Deb K. Multi-objective optimization using evolutionary algorithms. New York:John Wiley & Sons,2001
  • 3[3]Srinivas N, Deb K. Multi-objective optimization using non-domitated sorting in genetic algorithms. Evolutionary Computation,1994, 2(3): 221~248
  • 4[4]Fonseca C M, Flemming P J. Multi-objective optimization and multiple constraints handling with evolutionary algorithms.Part 1:A unified formulation. IEEE Transactions on System, Man and Cybernetics-Part A Systems and Humans, 1998,28(1): 26~37
  • 5[5]Shannon C E. A mathematical theory of communication.[s.l.]: B S T J ,1948
  • 6[6]Zitzler E, Theile L. Multi-objective evolutionary algorithms: A comparative case study and the strength pareto spproach. IEEE Transactions on Evolutionary Computation, 1999,3(4): 257~271
  • 7宗敬群.一类混合自适应遗传算法及性能分析[J].系统工程理论与实践,2001,21(4):14-18. 被引量:9
  • 8王凌,郑大钟.多目标优化的一类模拟退火算法[J].计算机工程与应用,2002,38(8):4-5. 被引量:25

共引文献8

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部