期刊文献+

基于自组织特征映射的图象矢量量化 被引量:1

Sofm-based Image Vector Quantization
下载PDF
导出
摘要 本文就基于自组织特征映射的图象矢量量化编码做了初步的探讨,得出一些结论。在矢量量化中,码本性能的好坏对重建的图像有直接的影响。我们利用自组织特征映射(SOFM)网络进行聚类,实现了图像矢量码本的生成,然后再根据矢量量化(VQ)编码原理将图像重建。该方法可以达到较高的压缩比,实现了图像压缩。并且,就不同条件下的图像作了对比。 In this paper, SOFM-based image vector qoantization is done some research , and we make some conclusions. During the vector quantization ,the performance of code table is vital to the reconstructed image. Here SOFM is adopted for clustering in order to make a good code table ,and then images are reconstructed. We can get more high compression ratio by this method and draw a comparisons between different images.
出处 《微计算机信息》 北大核心 2006年第05S期208-209,192,共3页 Control & Automation
基金 国家自然科学基金资助项目(NO.60272054)
关键词 自组织特征映射(SOFM) 聚类 码本 矢量量化(VQ) 图像压缩 SOFM vector quantization code table clustering image compression
  • 相关文献

参考文献5

  • 1Gray RM.Vector quantization.IEEEASSP magazine,1984,1.2:4-29.
  • 2Ahalt S C,et al. Competitive learning algorithms for vector quantization. Neural Networks, 1990.277-290.
  • 3Chung F L,et al.Fuzzy competitive learning.Neural Networks,1994.539-551.
  • 4沈兰荪著.《视频编码与低速率传输》,北京:电子工业出版社.
  • 5杨洁,朱光喜,金欣,鲁照华.基于相邻运动矢量相关性的运动矢量预测算法[J].微计算机信息,2005,21(09X):107-108. 被引量:11

二级参考文献1

  • 1Thomas Wiegand Gary Sullivan,Ajay Luthra,JVT-G050r1.doc,Geneva,Switzerland,23-27 May,2003.

共引文献10

同被引文献8

  • 1Fox, J. Anderson.Onboard Autonomous Rock Shape.Analysis for Mars Rovers[J]. IEEE Aerospaee. 2002.
  • 2Autio, J. The Classification and characterization of Rock Using Texture Analysis hy Co-occurrence Matrices and the Hough Transform[C]. International Symposium on Imaging Applications in Geology, Belgium .1999: 5-8.
  • 3Lepisto, L., Kunnu, I., Autio, J., Visa, A. Rock Image Classification Using Non-Homogenous Textures and Spectral Imaging [C]. WSCG Short papers proceedlngs,WSCG 2003, Plzen, Czech Republic .2003:82-86.
  • 4K. B. Eom. Segmentation of monochrome and color textures using moving average modeling approach [J]. Image and Vision Computing Journal, vol. 17, no. 3.1999:231-242.
  • 5John C.P.,Nello C.,John S.T..Large Margin DAGs for Multielass Classification [J].Advances in Neural Information Processing Systems.MIT PRESS,2000(12).
  • 6T. Kohonen. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics 43.1982:.59 - 69.
  • 7Suraphon Khunkay, Kitti Paithoonwattanakij.Image Segmentation by Fuzzy rule and Kohonen-Constraint Satisfaction Fuzzy C-Mean [C].International Conference on Information, Communications and Signal Processing ICICS '97 Singapore, 9-12 September 1997: 713-717.
  • 8章毓晋.图像分割[M].科学出版社,2001.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部